Skip to content

Chinese-Text-Classification,Tensorflow CNN(卷积神经网络)实现的中文文本分类。QQ群:522785813,微信群二维码:http://www.tensorflownews.com/

License

Notifications You must be signed in to change notification settings

fendouai/Chinese-Text-Classification

Repository files navigation

用卷积神经网络基于 Tensorflow 实现的中文文本分类

这个项目是基于以下项目改写: cnn-text-classification-tf

关于 Chinese-Text-Classification 的问题欢迎来这里提问

主要的改动:

  • 兼容 tensorflow 1.2 以上
  • 增加了中文数据集
  • 增加了中文处理流程

特性:

  • 兼容最新 TensorFlow
  • 中文数据集
  • 基于 jieba 的中文处理工具
  • 模型训练,模型保存,模型评估的完整实现

训练结果

模型评估

以下为原项目的 README

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post.

It is slightly simplified implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in Tensorflow.

Requirements

  • Python 3
  • Tensorflow > 1.2
  • Numpy

Training

Print parameters:

./train.py --help
optional arguments:
  -h, --help            show this help message and exit
  --embedding_dim EMBEDDING_DIM
                        Dimensionality of character embedding (default: 128)
  --filter_sizes FILTER_SIZES
                        Comma-separated filter sizes (default: '3,4,5')
  --num_filters NUM_FILTERS
                        Number of filters per filter size (default: 128)
  --l2_reg_lambda L2_REG_LAMBDA
                        L2 regularizaion lambda (default: 0.0)
  --dropout_keep_prob DROPOUT_KEEP_PROB
                        Dropout keep probability (default: 0.5)
  --batch_size BATCH_SIZE
                        Batch Size (default: 64)
  --num_epochs NUM_EPOCHS
                        Number of training epochs (default: 100)
  --evaluate_every EVALUATE_EVERY
                        Evaluate model on dev set after this many steps
                        (default: 100)
  --checkpoint_every CHECKPOINT_EVERY
                        Save model after this many steps (default: 100)
  --allow_soft_placement ALLOW_SOFT_PLACEMENT
                        Allow device soft device placement
  --noallow_soft_placement
  --log_device_placement LOG_DEVICE_PLACEMENT
                        Log placement of ops on devices
  --nolog_device_placement

Train:

./train.py

Evaluating

./eval.py --eval_train --checkpoint_dir="./runs/1459637919/checkpoints/"

Replace the checkpoint dir with the output from the training. To use your own data, change the eval.py script to load your data.

References

About

Chinese-Text-Classification,Tensorflow CNN(卷积神经网络)实现的中文文本分类。QQ群:522785813,微信群二维码:http://www.tensorflownews.com/

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages