ペルガのアポロニウス
表示
ペルガのアポロニウス(古希: Ἀπολλώνιος, 羅: Apollonius Pergaeus, 英: Apollonius of Perga、紀元前262年頃 - 紀元前190年頃)は、古代ギリシアの数学者・天文学者である。小アジアの町ペルガに生まれた。ムセイオンで教育をうけ、アレキサンドリアでプトレマイオス3世およびプトレマイオス4世の時代に活躍した。現トルコのペルガモンでしばらく暮らしたとされる。アレキサンドリアで没した。
業績
[編集]著書『円錐曲線』 (Κωνικά) において、円錐を頂点を通らない平面で切断した断面の図形「楕円(だえん、ellipse)」・「放物線(ほうぶつせん、parabola)」・「双曲線(そうきょくせん、hyperbola)」について詳細な研究をおこなった。「楕円」・「放物線」・「双曲線」の名称は、アポロニウスがそれぞれ「ellipsis(不足する)」・「parabole(一致する)」・「hyperbole(超越する)」と呼んだことに由来する[1]。また、天文学においては、(現在内容が伝わるものの中では最古の)離心円ならびに従円と周転円を用いた惑星の理論を展開し、惑星の留を特徴づけた。
著書
[編集]- アポッロニオス『円錐曲線論』ポール・ヴェル・エック 仏訳、竹下貞雄 和訳、大学教育出版、2009年1月。ISBN 978-4-88730-880-0。
脚注
[編集]参考文献
[編集]関連項目
[編集]外部リンク
[編集]- 平田寛『アポロニオス』 - コトバンク
- O'Connor, John J.; Robertson, Edmund F., “Apollonius of Perga”, MacTutor History of Mathematics archive, University of St Andrews.
- 古代ギリシャ語のテキスト:Heibergの『アポロニウス円錐曲線論』のPDFスキャン(パブリック・ドメイン)
- 英訳:『アポロニウス円錐曲線論』、T.L. Heath訳
- アポロニウスの円錐曲線論(中嶋俊朗・礒田正美:筑波大学)
- ラテン語:Apollonii Pergæi conicorum lib. V. VI. VII (1661)(筑波大学中央図書館).
- ラテン語(エドモンド・ハレー版):Apollonii Pergæi conicorum libri octo, et Sereni Antissensis De sectione cylindri & coni libri duo (1710)(筑波大学中央図書館)