Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective
Abstract
:1. Introduction
- To generate coastline maps of the seven coastal emirates from 1990, 2000, and 2010 and correlate them to the situations in 2021.
- To compute the total area developed in each of the coastal emirates during the period of analysis.
- Analyze geomorphic designs created by various geotechnical techniques for the purpose of creating surplus coastal land.
- Consider briefly the possible causes of Dubai’s extensive construction and their environmental impacts on land expansion.
2. Study Area
3. Materials and Methods
4. Results
4.1. Mapping “Building beyond Land in Arabian Gulf Waters Pertaining to the UAE”
4.2. Classification of Different Geoengineered Reclaimed Lands in the UAE
4.3. Land Use/Land Cover Features of Emirate of Dubai
5. Discussion
5.1. Driving Forces behind the Extensive Construction of Land beyond Sea in Dubai
5.2. Possible Potential Impacts and Methods to Mitigate the Risks of Artificial Reclamation of Land
5.2.1. Potential Impacts and Risks of ARI Pertaining to the UAE due to Earthquakes Both within the UAE and Iran
S. No | Date | Origin Time (UTC) | Location Lat/Long | Magnitude Mw | Distance from UAE (km) | Region |
---|---|---|---|---|---|---|
1 | 2021-11-14 | 12:08:38.812 | 27.7266/56.0716 | 6.4 | 200 | Zagros Fold belt area |
2 | 2022-07-01 | 23:25:13.465 | 26.8878/55.3213 | 6 | 150 | Zagros Fold belt area |
3 | 2022-07-01 | 21:32:07.977 | 26.9061/55.2389 | 6 | 160 | Zagros Fold belt area |
4 | 2021-11-14 | 12:07:03.595 | 27.7158/56.0743 | 6 | 200 | Zagros Fold belt area |
5 | 2022-03-16 | 23:15:47.266 | 27.0219/54.5843 | 5.9 | 200 | Zagros Fold belt area |
6 | 2022-07-01 | 23:24:13.113 | 26.8843/55.2572 | 5.7 | 150 | Zagros Fold belt area |
7 | 2022-07-23 | 16:09:07.209 | 26.9956/55.3766 | 5.6 | 140 | Zagros Fold belt area |
8 | 2022-06-25 | 03:37:14.329 | 26.7341/54.2683 | 5.6 | 200 | Zagros Fold belt area |
9 | 2022-06-15 | 06:06:02.539 | 26.6789/54.212 | 5.5 | 200 | Zagros Fold belt area |
5.2.2. Potential Impacts and Risks of ARIs in the Type of Shoreline Retreat across the Different Emirates of UAE
Umm Al Quwain (UAQ) and Ajman Coast—A Probable Victim of Construction of Artificial Reclaimed Lands
Remedies to Save UAQ and Ajman Coast
- Groins/Breakwaters Are of No Use
- 2.
- Seawalls
- 3.
- Offshore Barriers/Detached Breakwater—Probable Solution
6. Conclusions
- (1)
- How do these structures react in the perspective of sea level rise, climate change, land subsidence, earthquakes, and shoreline erosion along adjacent coastlines caused by sediment depletion?
- (2)
- What are the boosters of this kind of development, and in what ways do they vary between the various emirates of the United Arab Emirates?
- (3)
- What materials are used to build these artificial lands in water and where is the source?
- (4)
- What will be the likely geomorphic as well as other environmental concerns in the area of the source material and at the project site, and how can they be minimized and sorted in the most environmentally friendly manner?
Author Contributions
Funding
Conflicts of Interest
References
- Sengupta, D.; Chen, R.; Meadows, M.E. Building beyond land: An overview of coastal land reclamation in 16 global megacities. Appl. Geogr. 2018, 90, 229–238. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhao, X.; Ma, S.; Cao, H.; Cao, J. Assessing spatial vulnerability from rapid urbanization to inform coastal urban regional planning. Ocean. Coast. Manag. 2016, 123, 53–65. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Dahal, I.; Prakash, O. The Study on Construction of Artificial Island Using Land Reclamation Techniques. Imp. J. Interdiscip. Res. 2017, 3, 2013–2016. [Google Scholar]
- OSPAR. Assessment of Environmental Impact of Land Reclamation; OSPAR Commission Publication: London, UK, 2008. [Google Scholar]
- OSPAR. Literature Review on the Impacts of Dredged Sediment Disposed at Sea; OSPAR Commission Publication: London, UK, 2008; No. 362/2008. [Google Scholar]
- Hilton, M.J.; Manning, S.S. Conversion of coastal habitats in Singapore: Indications of unsustainable development. Environ. Conserv. 1995, 22, 307–322. [Google Scholar] [CrossRef]
- Jia, R.; Lei, H.; Hino, T.; Arulrajah, A. Environmental changes in Ariake Sea of Japan and their relationships with Isahaya Bay reclamation. Mar. Pollut. Bull. 2018, 135, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Lie, H.-J.; Cho, C.-H.; Lee, S.; Kim, E.-S.; Koo, B.-J.; Noh, J.-H. Changes in Marine Environment by a Large Coastal Development of the Saemangeum Reclamation Project in Korea. Ocean Polar Res. 2008, 30, 475–484. [Google Scholar]
- Lee, C.-H.; Lee, B.-Y.; Chang, W.K.; Hong, S.; Song, S.J.; Park, J.; Kwon, B.-O.; Khim, J.S. Environmental and ecological effects of Lake Shihwa reclamation project in South Korea: A review. Ocean Coast. Manag. 2014, 102, 545–558. [Google Scholar]
- Slamet, N.S.; Dargusch, P.; Aziz, A.A.; Wadley, D. Mangrove vulnerability and potential carbon stock loss from land reclamation in Jakarta Bay, Indonesia. Ocean Coast. Manag. 2020, 195, 105283. [Google Scholar]
- UNEP. Assessing global land use: Balancing consumption with sustainable supply. A Report of the working group on land and soils of the International Resource Panel. 2014. Available online: http://wedocs.unep.org/handle/20.500.11822/8861 (accessed on 15 September 2022).
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar]
- Wang, X.; Yan, F.; Su, F. Changes in coastline and coastal reclamation in the three most developed areas of China, 1980–2018. Ocean Coast. Manag. 2021, 204, 105542. [Google Scholar] [CrossRef]
- Ma, Z.; Melville, D.S.; Liu, J.; Chen, Y.; Yang, H.; Ren, W.; Zhang, Z.; Piersma, T.; Li, B. Rethinking China’s new great wall. Science 2014, 346, 912–914. [Google Scholar] [CrossRef] [Green Version]
- Xue Hong, C.; Xin, C.; An Ping, L.; Li Jun, C.; Shu, P.; Miao, L. Science China special topic: Global mapping of artificial surfaces at 30-m resolution. Sci. China Earth Sci. 2016, 59, 2295–2306. [Google Scholar] [CrossRef]
- Di Gregorio, A. Land cover classification system (LCCS): Classification concepts and user manual for software version 1.0. 2000. Available online: https://fao.org/3/a-i5232e.pdf (accessed on 15 September 2022).
- Findlay, A.C.; Hoy, C. Global population issues: Towards a geographical research agenda. Appl. Geogr. 2000, 20, 207–219. [Google Scholar] [CrossRef]
- Bagaeen, S. Brand Dubai: The instant city; or the instantly recognizable city. Int. Plan. Stud. 2007, 12, 173–197. [Google Scholar] [CrossRef]
- Arun; Kumar. Reclaimed islands and new offshore townships in the Arabian Gulf: Potential natural hazards. Curr. Sci. 2009, 96, 480–485. [Google Scholar]
- Afzal, M.S.; Tahir, F.; Al-Ghamdi, S.G. Recommendations and Strategies to Mitigate Environmental Implications of Artificial Island Developments in the Gulf. Sustainability 2022, 14, 5027. [Google Scholar] [CrossRef]
- Burt, J.A.; Al-Khalifa, K.; Khalaf, E.; AlShuwaikh, B.; Abdulwahab, A. The continuing decline of coral reefs in Bahrain. Mar. Pollut. Bull. 2013, 72, 357–363. [Google Scholar] [CrossRef]
- Naser, H.A. Effects of reclamation on microbenthic assemblages in the coastline of the Arabian Gulf: A microcosm experimental approach. Mar. Pollut. Bulletin. 2011, 62, 520–524. [Google Scholar]
- Al Naimi, A.; Karani, G.; Littlewood, J. Stakeholder Views on Land Reclamation and Marine Environment in Doha, Qatar. J. Agric. Environ. Sci. 2018, 6, 2334–2412. [Google Scholar]
- Shen, L.-Y.; Hao, J.L.; Tam, V.W.-Y.; Yao, H. A checklist for assessing sustainability performance of construction projects. J. Civ. Eng. Manag. 2007, 13, 273–281. [Google Scholar] [CrossRef]
- Grydehøj, A. Making ground, losing space: Land reclamation and urban public space in island cities. Urban Isl. Stud. 2015, 1, 96–117. Available online: http://www.urbanislandstudies.org (accessed on 15 September 2022). [CrossRef]
- Shukla, V.; Parikh, K. The environmental consequences of urban growth: Cross national perspectives on economic development, air pollution, and city size. Urban Geogr. 1992, 13, 422–449. [Google Scholar] [CrossRef]
- Zhang, Q.; Ban, Y.; Liu, J.; Hu, Y. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Comput. Environ. Urban Syst. 2011, 35, 126–139. [Google Scholar] [CrossRef]
- Loo, B.P.Y.; Chow, A.S.Y. Changing urban form in Hong Kong: What are the challenges on sustainable transportation? Int. J. Sustain. Transp. 2008, 2, 177–193. [Google Scholar] [CrossRef]
- Murakami, A.; Medrial Zain, A.; Takeuchi, K.; Tsunekawa, A.; Yokota, S. Trends in urbanization and patterns of land use in the Asian mega cities Jakarta, Bangkok, and Metro Manila. Landsc. Urban Planning. 2005, 70, 251–259. [Google Scholar] [CrossRef]
- Jones, G.W. Southeast Asian urbanization and the growth of mega-urban regions. J. Popul. Res. 2002, 19, 119–136. [Google Scholar] [CrossRef]
- Fayez, M. Elessawy. The Boom: Population and Urban Growth of Dubai city. Horiz. Humanit. Soc. Sci. 2017, 2, 26–41. [Google Scholar]
- Elessawy, F.M. The Abnormal Population Growth and Urban Sprawl of an Arabian Gulf City: The Case of Abu Dhabi City. Open J. Soc. Sci. 2021, 9, 245–269. [Google Scholar] [CrossRef]
- Naser, H.A. The role of environmental impact assessment in protecting coastal and marine environments in rapidly developing islands: The case of Bahrain, Arabian Gulf. Ocean Coast. Manag. 2015, 104, 159–169. [Google Scholar]
- Moghadam, H.M.; Helbich, M. Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 187–198. [Google Scholar] [CrossRef]
- Creel, L. Ripple effects: Population and coastal regions. 2003. Available online: http://pdf.usaid.gov/pdf_docs/Pnadd169.pdf (accessed on 15 September 2022).
- Von Glasow, R.; Jickells, T.D.; Baklanov, A.; Carmichael, G.R.; Church, T.M.; Gallardo, L.; Hughes, C.; Liss, P.S.; Mee, L.; Raine, R.; et al. Megacities and large urban agglomerations in the coastal Zone: Interactions between atmosphere, land, and marine ecosystems. Rolyal Swed. Acad. Sci. 2013, 42, 13–28. [Google Scholar] [CrossRef]
- Li, F.; Ding, D.; Chen, Z.; Chen, H.; Shen, T.; Wu, Q.; Zhang, C. Change of sea reclamation and the sea-use management policy system in China. Mar. Policy 2020, 115, 103861. [Google Scholar] [CrossRef]
- Wang, X.G.; Su, F.Z.; Zhang, J.J.; Cheng, F.; Hu, W.Q.; Ding, Z. Construction land sprawl and reclamation in the Johor River Estuary of Malaysia since 1973. Ocean Coast. Manag. 2019, 171, 87–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Wang, Y. Tendency of land reclamation in coastal areas of Shanghai from 1998 to 2015. Land Use Policy 2020, 91, 104370. [Google Scholar] [CrossRef]
- Hudak, A.T.; Wessman, C.A. Textural Analysis of Historical Aerial Photography to CharacterizeWoody Plant Encroachment in South African Savanna. Remote Sens. Environ. 1998, 66, 317–330. [Google Scholar] [CrossRef]
- Meng, W.; Hu, B.; He, M.; Liu, B.; Mo, X.; Li, H.; Wang, Z.; Zhang, Y. Temporal-spatial variations and driving factors analysis of coastal reclamation in China. Estuar. Coast. Shelf Sci. 2017, 191, 39–49. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ling, F.; Liu, Y.; Fang, F. Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Bouchahma, M.; Yan, W.; Ouessar, M. Island Coastline Change Detection Based on Image Processing and Remote Sensing. Comput. Inf. Sci. 2012, 5, 27. [Google Scholar]
- Patel, S.; Shah, E.; Jayaprasad, P.; James, M. Changes in Antarctic coastline between 1997 and 2016 using RADARSAT and MODIS data. Int. J. Remote Sens. 2019, 41, 1389–1414. [Google Scholar] [CrossRef]
- Aedla, R.; Dwarakish, G.; Reddy, D.V. Automatic Shoreline Detection and Change Detection Analysis of Netravati-GurpurRivermouth Using Histogram Equalization and Adaptive Thresholding Techniques. Aquat. Procedia. 2015, 4, 563–570. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E.; Young, R.C.; Abhishek, B.; Xia, Z. Mapping Trajectories of Coastal Land Reclamation in Nine Deltaic Megacities using Google Earth Engine. Remote Sens. 2019, 11, 2621. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Xu, N. Satellite-Based Monitoring of AnnualCoastal Reclamation in Shenzhen and Hong Kong since the 21st Century: A Comparative Study. J. Mar. Sci. Eng. 2021, 9, 48. [Google Scholar] [CrossRef]
- El-Kawy, O.A.; Rød, J.K.; Ismail, H.; Suliman, A. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl. Geogr. 2011, 31, 483–494. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.M.; Collins, W.D.; Arblaster, J.M.; Hu, A.; Buja, L.E.; Strand, W.G.; Teng, H. How much more global warming and sea level rise? Science 2005, 307, 1769–1772. [Google Scholar] [CrossRef] [Green Version]
- Pardaens, A.K.; Gregory, J.M.; Lowe, J.A. A model study of factors influencing projected changes in regional sea level over the twenty-first century. J. Clim. Dyn. 2011, 36, 9–10. [Google Scholar]
- Rignot, E.; Velicogna, I.; Van den Broeke, M.; Monaghan, A.; Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett. 2011, 38, 5. [Google Scholar] [CrossRef] [Green Version]
- McKay, N.P.; Overpeck, J.T.; Otto-Bliesner, B.L. The Role of Ocean Thermal Expansion in Last Interglacial Sea Level Rise. Geophysical Research Letters. Am. Geophys. Union 2011, 38, 14. [Google Scholar]
- IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Kyte, R. Climate Change Is a Challenge for Sustainable Development. In Proceedings of the Gaidar Forum, Moscow, Russia, 15 January 2014. [Google Scholar]
- Subraelu, P.; Sefelnasr, A.; Yagoub, M.M.; Sherif, M.; Ebraheem, A.A. Global Warming Climate Change and Sea Level Rise: Impact on Land Use Land Cover Features along UAE coast through Remote Sensing and GIS. J. Ecosys. Ecograph. 2022, 12, 329. [Google Scholar]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA. 2019, 116, 11195–11200. [Google Scholar] [PubMed] [Green Version]
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal vulnerability assessment of Cape Hettaras National Seashore (CAHA) to sea level rise. USGS Open File Rep. 2004, 1064. [Google Scholar]
- Balica, S.F.; Wright, N.G.; van der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment. Sustain. Sci. 2008, 3, 89–102. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Aobpaet, A.; Cuenca, M.C.; Hooper, A.; Trisirisatayawong, I. InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int. J. Remote Sens. 2013, 34, 2969–2982. [Google Scholar] [CrossRef]
- Alothman, A.; Bos, M.; Fernandes, R.; Ayhan, M. Sea level rise in the northwestern part of the Arabian Gulf. J. Geodyn. 2014, 81, 105–110. [Google Scholar] [CrossRef]
- Gurevich, A.E.; Chilingarian, G.V. Subsidence over producing oil and gasfields, and gas leakage to the surface. J. Pet Sci. Eng. 1993, 9, 239–250. [Google Scholar] [CrossRef]
- Mathers, E.L.; Woodworth, P.L. A study of departures from the inversebarometer response of sea level to air-pressure forcing at a period of 5days. QJR Meteorol Soc. 2004, 130, 725–738. [Google Scholar] [CrossRef]
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Change 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Syvitski, J.P. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar]
- Garner, A.J.; Mann, M.E.; Emanuel, K.A.; Kopp, R.E.; Lin, N.; Alley, R.B.; Horton, B.P.; DeConto, R.M.; Donnelly, J.P.; Pollard, D. Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proc. Natl. Acad. Sci. USA. 2017, 114, 11861–11866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 3785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Bianchi, A.; Dottori, F.; Feyen, L. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Chang. 2018, 8, 776–780. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Wu, J.G. Where to put the next billion people. Nature 2016, 537, 608–611. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Andri´c, I.; Koc, M.; Al-Ghamdi, S.G. A review of climate change implications for built environment: Impacts, mitigation measures and associated challenges in developed and developing countries. J. Clean. Prod. 2019, 211, 83–102. [Google Scholar] [CrossRef]
- Needa; Javed. Significance of Artificial Island in Overcoming the Scarcity of Land due to GlobalWarming and Sea-Level Rise. J. Energy Power Eng. 2017, 11, 427–434. [Google Scholar]
- Tahir, F.; Baloch, A.A.B.; Ali, H. Resilience of Desalination Plants for Sustainable Water Supply in Middle East. In Sustainability Perspectives: Science, Policy and Practice, Strategies for Sustainability; Khaiter, P.A., Erechtchoukova, M.G., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 303–329. ISBN 978-3-030-19550-2. [Google Scholar]
- Tahir, F.; Ajjur, S.B.; Serdar, M.Z.; Al-Humaiqani, M.; Kim, D.; Al-Thani, S.K.; Al-Ghamdi, S.G. Qatar Climate Change Conference 2021: A Platform for Addressing Key Climate Change Topics Facing Qatar and the World; Al-Ghamdi, S.G., Al-Thani, S.K., Eds.; Hamad bin Khalifa University Press (HBKU Press): Doha, Qatar, 2021. [Google Scholar]
- Tahir, F.; Al-Ghamdi, S.G. Integrated MED and HDH desalination systems for an energy-efficient zero liquid discharge (ZLD) system. Energy Rep. 2022, 8, 29–34. [Google Scholar] [CrossRef]
- Alhaj, M.; Tahir, F.; Al-Ghamdi, S.G. Life-cycle environmental assessment of solar-driven Multi-Effect Desalination (MED) plant. Desalination 2022, 524, 115451. [Google Scholar] [CrossRef]
- Sreekumar, K.; Hassan, G. A Study of Artificial Islands; Centre for Public Policy Research: Kochi, India, 2020. [Google Scholar]
- Salimi, M.; Al-Ghamdi, S.G. Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustain. Cities Soc. 2020, 54, 101948. [Google Scholar] [CrossRef]
- IMF (International Monetary Fund). World Economic and Financial Surveys World Economic Outlook Database. 2019. Available online: https://www.imf.org/ (accessed on 15 September 2022).
- Van Lavieren, H.; Burt, J.; Feary, D.; Cavalcante, G.; Marquis, E.; Benedetti, L.; Trick, C.; Kjerfve, B.; Sale, P.F. Managing the growing impacts of development on fragile coastal and marine systems: Lessons from the Gulf. In A Policy Report; United Nations University—Institute for Water, Environment, and Health: Hamilton, ON, Canada, 2011. [Google Scholar]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Garland, G.G. Rising sea level and long-term sustainability of near-shore islands of the united arab emirates: An approach to establishing setback lines for Abu Dhabi. WIT Trans Ecol Environ. 2010, 130, 135–146. [Google Scholar]
- Hereher, M.E. Assessment of climate change Impacts on sea surface temperatures and sea level rise. Arab. Gulf Clim. 2020, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Al-Sayari, S.S.; Zölt, J.G. Quaternary Period in Saudi Arabia. 1; Springer: New York, NY, USA, 1978; p. 334. [Google Scholar]
- Purser, B.H.; Seibold, E. The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf. In The Persian Gulf: Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea; Purser, B.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1973; pp. 1–9. [Google Scholar]
- Smith, M.D.; Murray, A.B.; Gopalakrishnan, S.; Keeler, A.G.; Landry, C.E.; Mcnamara, D.; Moore, L. Geoengineering coastlines? From accidental to intentional. In Coastal Zones: Solutions for the 21st Century; Elsevier Press: Amsterdam, The Netherlands, 2015; Available online: http://ssrn.com/abstract=2403945 (accessed on 15 September 2022)ISBN 9780128027592.
- Sheehan, C.; Harrington, J. An environmental and economic analysis for geotube coastal structures retaining dredge material. Resour. Conserv. Recycl. 2012, 61, 91–102. [Google Scholar] [CrossRef]
- Fowler, J.; Stephens, T.C.; Santiago, M.; De Bruin, P. Amwaj Islands Constructed with Geotubes, Bahrain. World Dredging Min. Constr. 2002, 38, 6–40. [Google Scholar]
- Tencate Geosynthetics The Low Cost, High Volume Dewatering Solution. Available online: https://www.tencategeo.eu/en/products/tencate-geotube/Dewatering-Geotube (accessed on 23 October 2022).
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Liu, H.; Li, Y.; Xu, H.; Shen, J.; Rhome, J.; Smith, T.J. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 2012, 102–103, 11–23. [Google Scholar] [CrossRef]
- Crane, J. City of Gold: Dubai and the Dream of Capitalism; St. Martin’s: New York, NY, USA, 2009. [Google Scholar]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.; Rindfuss, R.R. Introduction: Local processes with global impacts. In Land-Use and land-Cover Change; Springer: Heidelberg, Berlin, 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Subraelu, P.; Yagoub, M.M.; Sefelnasr, A.; Rao, K.N.; Allamsatti, R.S.; Sherif, M. Sea-level Rise and Coastal Vulnerability: A Preliminary Assessment of UAE Coast through Remote Sensing and GIS. J. Coast Zone Manag. 2021, 24, 477. [Google Scholar]
- Moussavi, Z.; Aghaei, A. The environment, geopolitics and artificial islands of Dubai in the Persian Gulf. Procedia Soc. Behav. Sci. 2013, 81, 311–313. [Google Scholar] [CrossRef] [Green Version]
- Pacione, M. Mumbai. Cities 2006, 23, 229–238. [Google Scholar] [CrossRef]
- Liu, D.C.; Wu, D.X.; Cao, D.X.; Wu, D.G. Analysis of coastline changes and the socio-economic driving mechanism in Shenzhen, China. Marine Geodesy. 2017, 40, 378–403. [Google Scholar] [CrossRef] [Green Version]
- Elham Fakhro. Land Reclamation in the Arabian Gulf: Security, Environment and Legal issues. J. Arab. Stud. 2013, 3, 36–52. [Google Scholar] [CrossRef]
- Gagain, M. Climate change, sea level rise, and artificial islands: Saving the Maldives’ statehood and maritime claims through the constitution of the oceans. Colorado. J. Int. Environ. Law Policy 2012, 23, 78–120. Available online: https://www.colorado.edu/law/sites/default/files/GAGAIN%20_correctedv2_.pdf (accessed on 15 September 2022).
- Ghaffari, K.; Habibzadeh, T.; Mortaza, A.N.; Mousazadeh, R. Construction of artificial islands in southern coast of the Persian Gulf from the viewpoint of international environmental law. J. Politics Law 2017, 10, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Riley, J.G. The construction of artificial islands in the Heaufort Sea. J. Pet. Technol. 1976, 28, 365–371. [Google Scholar] [CrossRef]
- Hutchings, P.A.; Wu, B.L. Coral reefs of Hainan island, South China sea. Mar. Pollut. Bull. 1987, 18, 25–26. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Chen, B.; Barter, M.; Piersma, T. Impacts of tidal land reclamation in Bohai bay, China: Ongoing losses of critical Yellow sea water bird staging and wintering sites. Bird Conserv. Int. 2011, 21, 241–259. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, H.; Huang, Q.; Zhang, Y.; Hu, M.; Niu, Y.; Zhu, J. Characterization and environmental impact analysis of sea land reclamation activities in China. Ocean. Coast. Manag. 2016, 130, 128–137. [Google Scholar] [CrossRef]
- Chan, J.; Leung, H.; Yue, P.; Au, C.; Wong, Y.; Cheung, K.; Li, W.; Yung, K. Combined effects of land reclamation, channel dredging upon the bioavailable concentration of polycyclic aromatic hydrocarbons (pahs) in Victoria Harbour sediment, Hong Kong. Mar. Pollut. Bull. 2017, 114, 587–591. [Google Scholar] [CrossRef]
- Padmalal, D.; Maya, K.; Sreebha, S.; Sreeja, R. Environmental effects of river sand mining: A case from the river catchments of Vembanad lake, Southwest coast of India. Environ. Geol. 2008, 54, 879–889. [Google Scholar] [CrossRef]
- Thornton, E.B.; Sallenger, A.; Sesto, J.C.; Egley, L.; McGee, T.; Parsons, R. Sand mining impacts on long-term dune erosion in southern Monterey Bay. Mar. Geol. 2006, 229, 45–58. [Google Scholar] [CrossRef]
- De Leeuw, J.; Shankman, D.; Wu, G.; De Boer, W.F.; Burnham, J.; He, Q.; Yesou, H.; Xiao, J. Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake, China. Reg. Environ. Change 2010, 10, 95–102. [Google Scholar] [CrossRef]
- Khan, N.Y. Multiple stressors and ecosystem-based management in the Gulf. Aquat. Ecosyst. Health Manag. 2007, 10, 259–267. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Overview on Land-Based Sources and Activities Affecting the Marine Environment in the ROPME Sea Area; UNEP Regional Seas Reports and Studies No. 168; United Nations: Geneva, Switzerland, 1999.
- Maxwell S, Buchanan-Smith M Linking relief and development: Introduction and overview. IDS Bull. 1994, 25, 1–19.
- Bendimerad, F. Disaster Risk Reduction and Sustainable Development. World Bank Seminar on the Role of Local Governments in Reducing the Risk of Disasters, Held in Istanbul, Turkey, 28 April–2 May 2003. pp. 57–75. Available online: http://info.worldbank.org/etools/docs/library/114715/istanbul03/docs/istanbul03/05bendimerad3-n[1].pdf (accessed on 10 August 2022).
- Kameda, H. Networking disaster risk reduction technology and knowledge through disaster reduction hyperbase (DRH). In Proceedings of the disaster reduction hyperbase (DRH) Contents Meeting, Kobe, Japan, 12–13 March 2007; Available online: http://drh.edm.bosai.go.jp/Project/Phase2/1Documents/9_EXr.pdf (accessed on 12 August 2022).
- Onstad, P.A.; Danes, S.M.; Hardman, A.M.; Olsonc, P.D.; Marczak, M.S.; Heins, R.K. The road to recovery from a natural disaster: Voices from the community. Commun Dev. 2012, 3, 566–580. [Google Scholar] [CrossRef]
- Edwards, M.L. Social location and self-protective behavior: Implications for earthquake preparedness. Int. J. Mass Emerg. Disasters. 1993, 11, 293–304. [Google Scholar]
- Wyss, M.; Al-Homoud, A.S. Scenarios of Seismic Risk in the United Arab Emirates, an Appropriate Estimate. Nat. Hazards 2004, 32, 375–393. [Google Scholar] [CrossRef]
- Yagoub, M.M. Earthquake preparedness: The case of Eastern UAE. Arab. J. Geosci. 2016, 9, 721. [Google Scholar] [CrossRef]
- Al-Amri, A.M. Seismic source zones of the Arabian Peninsula and adjacent countries. In Gulf Seismic Forum; abstract 2–3; UAE University: Al-Ain, United Arab Emirates, 2005. [Google Scholar]
- Al-Amri, A.M. Characterization of seismic zones in the Arabian Peninsula. In Seventh Meeting of the Saudi Society for Geosciences; abstract 56; King Saud University: Riyadh, Saudi Arabia, 2007. [Google Scholar]
- Fournier, M.; Lepvrier, C.; Razin, P.; Jolivet, L. Late Cretaceous to Paleogene post-obduction extension and subsequent Neogene compression in the Oman Mountains. GeoArabia 2006, 11, 17–39. [Google Scholar] [CrossRef]
- Petrovski, J.T. Seismic risk of tall buildings and structures caused by distant earthquakes. In Gulf Seismic Forum; abstract 35–40; UAE University: Al-Ain, United Arab Emirates, 2005. [Google Scholar]
- Tavakoli, B.; Ghafory-Ashtiany, M. Seismic hazard assessment of Iran. Ann. Di Geofis. 1999, 42, 1013–1021. [Google Scholar] [CrossRef]
- The National UAE. New Earthquake Code for Dubai’s Tall Buildings. 2013. Available online: http://www.thenational.ae/news/uae-news/new-earthquake-codefor-dubais-tall-buildings (accessed on 15 August 2022).
- Mario, M.N.; Vincente, N.; del Campo, J.M.; Jose, S.L.G.; Dolores, E. Review of coastal Land Reclamation situation in the world. J. Coast. Res. 2016, 75, 667–671. [Google Scholar]
- Williams, C.T. Development and seismic stability in coastal zone. In Gulf Seismic Forum; abstract 57; UAE University: Al-Ain, United Arab Emirates, 2005. [Google Scholar]
- Li, Y.; Wang, Y.; Peng, J.; Liu, Z.; Wu, J. Assessment of loss of ecosystem service value under sea-level rise: A case study of Shekou Peninsula in Shenzhen. Prog. Geogr. 2009, 28, 417–423. [Google Scholar]
- Wang, H.; Wright, T.J.; Yu, Y.; Lin, H.; Jiang, L.; Li, C.; Qiu, G. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int. 2012, 191, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Bou-Rabee, F.; Young, Y.L.; Okal, E.A. Evidence of prehistoric liquefaction in Kuwait and implications for the seismic vulnerability of the Arabian Gulf countries. Nat. Hazards 2020, 103, 799–813. [Google Scholar] [CrossRef]
- Pararas-Carayannis, G. The potential of Tsunami Generation Along the Makran Subduction zone in the Northern Arabian Sea. Case study: The Earthquake and Tsunami of November 28, 1945. Sci. Tsunami Hazards 2006, 24, 358–384. [Google Scholar]
- Abdalla, J.A.; Al-Homoud, A.S. Seismic Hazard Assessment of United Arab Emirates and its surroundings. J. Earthq. Eng. 2004, 8, 817–837. [Google Scholar] [CrossRef]
- Reeve, D.; Chadwick, A.; Fleming, C. Coastal Engineering: Processes, Theory and Design Practice; Taylor and Francis: Abingdon, UK, 2004; pp. 198–199. [Google Scholar]
- Kim, I.H.; Lee, H.S.; Kim, J.H.; Yoon, J.S.; Hur, D.S. Shoreline change due to construction of the Artificial Headland with submerged breakwaters. J. Coast. Res. 2014, 72, 145–150. [Google Scholar] [CrossRef]
- Shareef, N.M. Disappearing beaches of Kerala. Curr. Sci. 2007, 92, 157–158. [Google Scholar]
- Meher-Homji, V.M. Sea-walls-a necessary evil. Curr. Sci. 2007, 92, 878. [Google Scholar]
- Koike, K. Artificial Structures and Shorelines; Walker, H.J., Ed.; Kluwer: Dordrech, The Netherlands, 1988; pp. 317–330. [Google Scholar]
- Silvester, R.; Hsu, J.C.R. Coastal Stabilization: Innovative Concepts; Prentice-Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Cooper, N.J. The Engineering Performance and Geomorphic Impacts of Shoreline Management at Contrasting Sites in Southern England. Ph.D. Thesis, Departments of Geography and Civil Engineering, University of Portsmouth, Portsmouth, UK, 1996. [Google Scholar]
- Chasten, M.A.; Rosati, J.D.; Mccormick, J.W.; Randall, R.E. Engineering Design Guidance for Detached Breakwaters as Shoreline Stabilization Structures; Technical report 1993 CERC-9319; US Army Engineers, Waterways Experiment Station, Coastal Engineering Research Center: Washington, DC, USA, 1993. [Google Scholar]
- Barber, P.C.; Dxvncs, C.D. Offshore breakwaters-Leasowe Bay. In Proceedings of the Institution of Civil Engineers; Institution of Civil Engineers: State College, PA, USA, 1985; pp. 85–109. [Google Scholar]
- Fried, C.E. Protection by means of offshore breakwaters. In Proceedings of the 15th Coastal Engineering Conference (ASCE), Honolulu, HI, USA, 11–17 July 1976; pp. 1407–1424. [Google Scholar]
- Nir, Y. Artificial Structures and Shorelines; Walker, H.J., Ed.; Kluwer: Dordrech, The Netherlands, 1988; pp. 253–260. [Google Scholar]
- Anthony, E.J.; Cohen, O. Nourishment solutions to the problem of beach erosion in France: The case of the French Riviera. In Directions in European Coastal Management; Healy, M.G., Doody, J.P., Eds.; Samara: Cardigan, UK, 1995; pp. 199–206. [Google Scholar]
- Rao, K.N.; Subraelu, P.; Rajawat, A.S. Beach Erosion in Visakhapatnam: Causes and Remedies. East. Geogr. 2008, XIV, 1–6. [Google Scholar]
- Abdel-Aal, F.M. Detached breakwaters for beach protection. Coastal zone: Proceedings Symp. Coastal & Ocean Management. In Coastlines of the Mediterranean; Fabbri, P., Magoon, O.T., Eds.; ASCE: New York, NY, USA, 1993; pp. 35–47. [Google Scholar]
Data Type | Data Used |
---|---|
LULC | Sentinel-2A (Jan 2022) 20 m, spatial resolution |
Environment protected areas map of Dubai | Dubai Municipality (Environment Department) |
Shoreline changes | Landsat 5 TM (Aug 1990) 30 m, spatial resolution Landsat 5 TM (Nov 2000) 30 m, Spatial resolution Landsat 7 ETM (Sep 2010) 30 m, Spatial resolution Landsat 7 ETM (Nov 2021) 30 m, Spatial resolution |
Bathymetric contour maps | Navionics marine charts |
Population data | Dubai Statistics Center “www.dsc.gov.ae (accessed on 18 August 2022)” Abu Dhabi Statistics Center “www.scad.ae (accessed on 18 August 2022)” |
Earthquake data | “https://earthquake.usgs.gov/earthquakes/map/ (accessed on 27 July 2020)” |
Type of Construction Model | Name of the Reclaimed Area |
---|---|
Expanded land construction | (a) Blue Water Island (Dubai), Figure 5e |
(b) Jumeirah Open Beach Islands (Dubai), Figure 5f | |
(c) Dubai Maritime City (Dubai), Figure 5f | |
(d) Jebel Ali container terminal (Dubai), Figure 5d | |
(e) Al Marjan (RAK), Figure 5i | |
(f) Fujairah Port (Fujairah), Figure 5j | |
(g) Al Kasir (Abu Dhabi), Figure 5a | |
(h) Khalifa Port (Abu Dhabi), Figure 5c | |
(i) Al Raha (Abu Dhabi), Figure 5b | |
Offshore construction | (a) World Islands (Dubai), Figure 5g |
(b) Palm Jebel Ali (Dubai), Figure 5d | |
(c) Palm Jumeirah (Dubai), Figure 5e | |
(d) Palm Deira (Dubai), Figure 5h | |
(e) Daria Island (Dubai), Figure 5f | |
(f) LuLu Island (Abu Dhabi), Figure 5a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subraelu, P.; Ebraheem, A.A.; Sherif, M.; Sefelnasr, A.; Yagoub, M.M.; Rao, K.N. Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective. Land 2022, 11, 2024. https://doi.org/10.3390/land11112024
Subraelu P, Ebraheem AA, Sherif M, Sefelnasr A, Yagoub MM, Rao KN. Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective. Land. 2022; 11(11):2024. https://doi.org/10.3390/land11112024
Chicago/Turabian StyleSubraelu, P., Abdel Azim Ebraheem, Mohsen Sherif, Ahmed Sefelnasr, M. M. Yagoub, and Kakani Nageswara Rao. 2022. "Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective" Land 11, no. 11: 2024. https://doi.org/10.3390/land11112024
APA StyleSubraelu, P., Ebraheem, A. A., Sherif, M., Sefelnasr, A., Yagoub, M. M., & Rao, K. N. (2022). Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective. Land, 11(11), 2024. https://doi.org/10.3390/land11112024