Skip to main content
Log in

The activating protein-1 transcriptional complex

Essential and multifaceted roles in bone

  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The activating protein-1 (AP-1) family of transcriptional mediators is composed of dimers of Jun and Fos family members that have other potential partners such as the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) protein families as well. AP-1 is one of the first and most well-characterized transcriptional mediators known with noted impact described in the literature for most tissues in the body. The skeletal impact of AP-1 has been intensively investigated, and extensive information exists for the role of various AP-1 proteins in osteoblast and chondrocyte activities in vitro. Numerous genes important in skeletal biology such as the receptor activator of nuclear factor (NF)-ϰB-ligand (RANKL), osteocalcin (OCN), runx2, collagens, and bone morphogenetic proteins (BMPs) contain AP-1 sites in their promoters, and key hormonal controls of skeletogenesis rely on AP-1 for their activities. Gene-targeted murine models with loss and gain of function for the various AP-1 family members have been particularly informational in the understanding of AP-1 in bone. The complex signaling network that is emerging for osteoclast differentiation reveals a critical role for AP-1. The context of the AP-1, the composition of the dimerizations and the temporal presentation of the downstream activities of AP-1 are integral to the balance of osteoblast and osteoclast function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

AP-1:

activating protein-1

ATF:

activating transcription factor

BMP:

bone morphogenetic protein

BSP:

bone sialoprotein

bZIP:

basic-leucine zipper

CDK:

cyclin-dependent kinase

COL 1a2:

collagen type I α 2

CRE:

cAMP responsive element

CREB:

CRE binding

DMP:

dentin matrix protein

EREs:

estrogen-responsive DNA elements

ERs:

estrogen receptors

GM-CSF:

granulocyte macrophage-colony stimulating factor

IEG:

immediate early gene

IFN:

interferon

IGFs:

insulin-like growth factors

IKK:

inhibitor of NF-ϰB (I-ϰB) kinase

IL-1:

interleukin-1

JNK:

Jun N-terminal kinase

MAF:

musculoaponeurotic fibrosarcoma

MAP:

mitogen-activated protein

MGP:

matrix Gla protein

MITF:

microphthalmia transcription factor

MKK7:

MAP kinase kinase 7

MMP:

matrix metalloproteinases

NFAT:

nuclear factor of activated T-cell

OCN:

osteocalcin

OPG:

osteoprotegerin

OPN:

osteopontin

P38MAPK:

p38 MAP kinase

PKA:

protein kinase A

PKC:

protein kinase C

PTH:

parathyroid hormone

PTHrP:

parathyroid hormone-related protein

RANKL:

receptor activator of NF-ϰB-ligand

RSK:

ribosomal S6 kinase

SRE:

serum response element

SRF:

serum response factor

TGF:

transforming growth factor

TIMPs:

tissue inhibitors of MMP

TPA:

12-O-tetradecanoylphorbol-13 acetate

TRAF:

TNF-receptor associated factor

TRAP:

tartrate-resistant acid phosphatase

TRE:

TPA responsive element

VEGF:

vascular endothelial growth factor

References

  1. Curran T, Teich NM. 1982 Identification of a 39,000-dalton protein in cells transformed by the FBJ murine osteosarcoma virus. Virology 116(1):221–235.

    Article  PubMed  CAS  Google Scholar 

  2. Sng JC, Taniura H, Yoneda Y. 2004 A tale of early response genes. Biol Pharm Bull 27(5):606–612.

    Article  PubMed  CAS  Google Scholar 

  3. Grigoriadis A, Schellander K, Wang Z, Wagner E. 1993 Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol 122(3):685–701.

    Article  PubMed  CAS  Google Scholar 

  4. Acquaviva C, Bossis G, Ferrara P, Brockly F, Jariel-Encontre I, Piechaczyk M. 2002 Multiple degradation pathways for Fos family proteins. Ann N Y Acad Sci 973:426–434.

    Article  PubMed  CAS  Google Scholar 

  5. Schreiber M, Poirier C, Franchi A, et al. 1997 Structure and chromosomal assignment of the mouse fra-1 gene, and its exclusion as a candidate gene for oc (osteosclerosis). Oncogene 15(10):1171–1178.

    Article  PubMed  CAS  Google Scholar 

  6. Adiseshaiah P, Peddakama S, Zhang Q, Kalvakolanu DV, Reddy SP. 2005 Mitogen regulated induction of FRA-1 proto-oncogene is controlled by the transcription factors binding to both serum and TPA response elements. Oncogene 24(26): 4193–4205.

    Article  PubMed  CAS  Google Scholar 

  7. Tkach V, Tulchinsky E, Lukanidin E, Vinson C, Bock E, Berezin V. 2003 Role of the Fos family members, c-Fos, Fra-1 and Fra-2, in the regulation of cell motility. Oncogene 22(32):5045–5054

    Article  PubMed  CAS  Google Scholar 

  8. Murakami M, Sonobe MH, Ui M, et al. 1997 Phosphorylation and high level expression of Fra-2 in v-src transformed cells: a pathway of activation of endogenous AP-1. Oncogene 14(20):2435–2444.

    Article  PubMed  CAS  Google Scholar 

  9. Carrasco D, Bravo R. 1995 Tissue-specific expression of the fos-related transcription factor fra-2 during mouse development. Oncogene 10(6):1069–1079.

    PubMed  CAS  Google Scholar 

  10. Foletta VC, Sonobe MH, Suzuki T, Endo T, Iba H, Cohen DR. 1994 Cloning and characterisation of the mouse fra-2 gene. Oncogene 9(11):3305–3311.

    PubMed  CAS  Google Scholar 

  11. Yen J, Wisdom RM, Tratner I, Verma IM. 1991 An alternative spliced form of FosB is a negative regulator of transcriptional activation and transformation by Fos proteins. Proc Natl Acad Sci U S A 88(12):5077–5081.

    Article  PubMed  CAS  Google Scholar 

  12. Funk M, Poensgen B, Graulich W, Jerome V, Muller R. 1997 A novel, transformation-relevant activation domain in Fos proteins. Mol Cell Biol 17(2):537–544.

    PubMed  CAS  Google Scholar 

  13. Vogt PK. 2002 Fortuitous convergences: the beginnings of JUN. Nat Rev Cancer 2(6):465–469.

    Article  PubMed  CAS  Google Scholar 

  14. Eferl R, Wagner EF. 2003 AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3(11):859–868.

    Article  PubMed  CAS  Google Scholar 

  15. Dunn C, Wiltshire C, MacLaren A, Gillespie DA. 2002 Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal 14(7):585–593.

    Article  PubMed  CAS  Google Scholar 

  16. Passegué E, Wagner EF. 2000 JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 19(12):2969–2979.

    Article  PubMed  Google Scholar 

  17. Weitzman JB, Fiette L, Matsuo K, Yaniv M. 2000 JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell 6(5):1109–1119.

    Article  PubMed  CAS  Google Scholar 

  18. Berry J, Ealba E, Pettway GJ, et al. 2005 JunB as a downstream mediator of PTHrP actions in cementoblasts. J Bone Miner Res 21(2):246–257.

    Article  PubMed  CAS  Google Scholar 

  19. Shaulian E, Karin M. 2002 AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131-E136.

    Article  PubMed  CAS  Google Scholar 

  20. Karin M, Hunter T. 1995 Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5(7):747–57.

    Article  PubMed  CAS  Google Scholar 

  21. Bergsagel PL, Kuehl WM. 2001 Chromosome translocations in multiple myeloma. Oncogene 20(40):5611–5622.

    Article  PubMed  CAS  Google Scholar 

  22. Grigoriadis A, Wang Z, Cecchini M, et al. 1994 c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266(5184):443–448.

    Article  PubMed  CAS  Google Scholar 

  23. Wang ZQ, Grigoriadis AE, Mohle-Steinlein U, Wagner EF. 1991 A novel target cell for c-fos-induced oncogenesis: development of chondrogenic tumours in embryonic stem cell chimeras. EMBO J 10(9):2437–2450.

    PubMed  CAS  Google Scholar 

  24. Koh AJ, Demiralp B, Neiva K, et al. 2005 Cells of the osteoclast lineage as mediators of the anabolic actions of parathyroid hormone in bone. Endocrinology 146(11):4584–4596.

    Article  PubMed  CAS  Google Scholar 

  25. Schreiber M, Wang ZQ, Jochum W, Fetka I, Elliott C,, Wagner EF. 2000 Placental vascularisation requires the AP-1 component fra-1. Development 127(22):4937–4948.

    PubMed  CAS  Google Scholar 

  26. Eferl R, Hoebertz A, Schilling AF, et al. 2004 The Fosrelated antigen Fra-1 is an activator of bone matrix formation. EMBO J 23(14):2789–2799.

    Article  PubMed  CAS  Google Scholar 

  27. Schule R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, Evans RM. 1990 Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell 61(3):497–504.

    Article  PubMed  CAS  Google Scholar 

  28. Farzaneh-Far A, Davies JD, Braam LA, et al. 2001 A polymorphism of the human matrix gamma-carboxyglutamic acid protein promoter alters binding of an activating protein-1 complex and is associated with altered transcription and serum levels. J Biol Chem 276(35):32,466–32,473.

    Article  CAS  Google Scholar 

  29. Chung KY, Agarwal A, Uitto J, Mauviel A. 1996 An AP-1 binding sequence is essential for regulation of the human alpha2(I) collagen (COL1A2) promoter activity by transforming growth factor-beta. J Biol Chem 271(6):3272–3278.

    Article  PubMed  CAS  Google Scholar 

  30. Jochum W, David JP, Elliott C, et al. 2000 Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6(9):980–984.

    Article  PubMed  CAS  Google Scholar 

  31. Roschger P, Matsuo K, Misof BM, et al. 2004 Normal mineralization and nanostructure of sclerotic bone in mice overexpressing Fra-1. Bone 34(5):776–782.

    Article  PubMed  CAS  Google Scholar 

  32. Fleischmann A, Hafezi F, Elliott C, Reme CE, Ruther U, Wagner EF. 2000 Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev 14(21):2695–2700.

    Article  PubMed  CAS  Google Scholar 

  33. Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF. 2000 Fosll is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 24(2):184–187.

    Article  PubMed  CAS  Google Scholar 

  34. Karreth F, Hoebertz A, Scheuch H, Eferl R, Wagner EF. 2004 The AP-1 transcription factor Fra2 is required for efficient cartilage development. Development 131(22): 5717–5725.

    Article  PubMed  CAS  Google Scholar 

  35. Sabatakos G, Sims NA, Chen J, et al. 2000 Overexpression of Delta FosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6(9):985–990.

    Article  PubMed  CAS  Google Scholar 

  36. Kveiborg M, Sabatakos G, Chiusaroli R, et al. 2004 Delta FosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms. Mol Cell Biol 24(7):2820–2830.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson RS, van Lingen B, Papaioannou VE, Spiegelman BM. 1993 A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7(7B):1309–1317.

    PubMed  CAS  Google Scholar 

  38. Hilberg F, Aguzzi A, Howells N, Wagner EF. 1993 c-jun is essential for normal mouse development and hepatogenesis. Nature 365(6442):179–181.

    Article  PubMed  CAS  Google Scholar 

  39. Behrens A, Haigh J, Mechta-Grigoriou F, Nagy A, Yaniv M, Wagner EF. 2003 Impaired intervertebral disc formation in the absence of Jun. Development 130(1):103–109.

    Article  PubMed  CAS  Google Scholar 

  40. Passegué E, Jochum W, Behrens A, Ricci R, Wagner EF. 2002 JunB can substitute for Jun in mouse development and cell proliferation. Nat Genet 30(2):158–166.

    Article  PubMed  CAS  Google Scholar 

  41. Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF. 1999 JunB is essential for mammalian placentation. EMBO J 18(4):934–948.

    Article  PubMed  CAS  Google Scholar 

  42. Schorpp M, Jager R, Schellander K, et al. 1996 The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res 24(9):1787–1788.

    Article  PubMed  CAS  Google Scholar 

  43. Hess J, Hartenstein B, Teurich S, Schmidt D, Schorpp-Kistner M, Angel P. 2003 Defective endochondral ossification in mice with strongly compromised expression of JunB. J Cell Sci 116(Pt 22):4587–4596.

    Article  PubMed  CAS  Google Scholar 

  44. Kenner L, Hoebertz A, Beil T, et al. 2004 Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 164(4):613–623.

    Article  PubMed  CAS  Google Scholar 

  45. Thepot D, Weitzman JB, Barra J, et al. 2000 Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development 127(1):143–153.

    PubMed  CAS  Google Scholar 

  46. David JP, Mehic D, Bakiri L, et al. 2005 Essential role of RSK2 in c-Fos-dependent osteosarcoma development. J Clin Invest 115(3):664–672.

    Article  PubMed  CAS  Google Scholar 

  47. Reimold AM, Grusby MJ, Kosaras B, et al. 1996 Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379(6562):262–265.

    Article  PubMed  CAS  Google Scholar 

  48. Yang X, Matsuda K, Bialek P, et al. 2004 ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117(3):387–398.

    Article  PubMed  CAS  Google Scholar 

  49. Hai T, Curran T. 1991 Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci U S A 88(9):3720–3724.

    Article  PubMed  CAS  Google Scholar 

  50. MacLean HE, Kim JI, Glimcher MJ, Wang J, Kronenberg HM, Glimcher LH. 2003 Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol 262(1):51–63.

    Article  PubMed  CAS  Google Scholar 

  51. McCabe LR, Kockx M, Lian J, Stein J, Stein G. 1995 Selective expression of fos-and jun-related genes during osteoblast proliferation and differentiation. Exp Cell Res 218(1):255–262.

    Article  PubMed  CAS  Google Scholar 

  52. McCabe LR, Banerjee C, Kundu R, et al. 1996 Developmental expression and activities of specific Fos and Jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology 137(10):4398–4408.

    Article  PubMed  CAS  Google Scholar 

  53. Dony C, Gruss P. 1987 Proto-oncogene c-fos expression in growth regions of fetal bone and mesodermal web tissue. Nature 328(6132):711–714.

    Article  PubMed  CAS  Google Scholar 

  54. Sandberg M, Vuorio T, Hirvonen H, Alitalo K, Vuorio E. 1988 Enhanced expression of TGF-beta and c-fos mRNAs in the growth plates of developing human long bones. Development 102(3):461–470.

    PubMed  CAS  Google Scholar 

  55. Caubet JF, Bernaudin JF. 1988 Expression of the c-fos proto-oncogene in bone, cartilage and tooth forming tissues during mouse development. Biol Cell 64(1):101–104.

    Article  PubMed  CAS  Google Scholar 

  56. Ruther U, Garber C, Komitowski D, Muller R, Wagner EF. 1987 Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature 325(6103): 412–416.

    Article  PubMed  CAS  Google Scholar 

  57. Closs EI, Murray AB, Schmidt J, Schon A, Erfle V, Strauss PG. 1990 c-fos expression precedes osteogenic differentiation of cartilage cells in vitro. J Cell Biol 111(3): 1313–1323.

    Article  PubMed  CAS  Google Scholar 

  58. Ohta S, Yamamuro T, Lee K, et al. 1991 Fracture healing induces expression of the proto-oncogene c-fos in vivo. Possible involvement of the Fos protein in osteoblastic differentiation. FEBS Lett 284(1):42–45.

    Article  PubMed  CAS  Google Scholar 

  59. Clohisy JC, Scott DK, Brakenhoff KD, Quinn CO, Partridge NC. 1992 Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells. Mol Endocrinol 6(11):1834–1842.

    Article  PubMed  CAS  Google Scholar 

  60. McCauley LK, Koh AJ, Beecher CA, Rosol TJ. 1997 Proto-oncogene c-fos is transcriptionally regulated by parathyroid hormone (PTH) and PTH-related protein in a cyclic adenosine monophosphate-dependent manner in osteoblastic cells. Endocrinology 138(12):5427–5433.

    Article  PubMed  CAS  Google Scholar 

  61. Palcy S, Bolivar I, Goltzman D. 2000 Role of activator protein 1 transcriptional activity in the regulation of gene expression by transforming growth factor beta 1 and bone morphogenetic protein 2 in ROS 17/2.8 osteoblast-like cells. J Bone Miner Res 15(12):2352–2361.

    Article  PubMed  CAS  Google Scholar 

  62. Ohta S, Hiraki Y, Shigeno C, et al. 1992 Bone morphogenetic proteins (BMP-2 and BMP-3) induce the late phase expression of the proto-oncogene c-fos in murine osteoblastic MC3T3-E1 cells. FEBS Lett 314(3):356–360.

    Article  PubMed  CAS  Google Scholar 

  63. Pearman AT, Chou WY, Bergman KD, Pulumati MR, Partridge NC. 1996 Parathyroid hormone induces c-fos promoter activity in osteoblastic cells through phosphorylated cAMP response element (CRE)-binding protein binding to the major CRE. J Biol Chem 271(41):25,715–725,721.

    CAS  Google Scholar 

  64. Hoyland J, Sharpe PT. 1994 Upregulation of c-fos protooncogene expression in pagetic osteoclasts. J Bone Miner Res 9(8):1191–1194.

    Article  PubMed  CAS  Google Scholar 

  65. Sunters A, McCluskey J, Grigoriadis AE. 1998 Control of cell cycle gene expression in bone development and during c-Fos-induced osteosarcoma formation. Dev Genet 22(4):386–397.

    Article  PubMed  CAS  Google Scholar 

  66. Thomas DP, Sunters A, Gentry A, Grigoriadis AE. 2000 Inhibition of chondrocyte differentiation in vitro by constitutive and inducible overexpression of the c-fos protooncogene. J Cell Sci 113(Pt 3):439–450.

    PubMed  CAS  Google Scholar 

  67. Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF. 1992 Bone and haematopoietic defects in mice lacking c-fos. Nature 360(6406):741–745.

    Article  PubMed  CAS  Google Scholar 

  68. Johnson RS, Spiegelman BM, Papaioannou V. 1992 Pleiotropic effects of a null mutation in the c-fos protooncogene. Cell 71(4):577–586.

    Article  PubMed  CAS  Google Scholar 

  69. McCauley LK, Koh-Paige AJ, Chen H, et al. 2001 Parathyroid hormone stimulates fra-2 expression in osteoblastic cells in vitro and in vivo. Endocrinology 142(5):1975–1981.

    Article  PubMed  CAS  Google Scholar 

  70. Stanislaus D, Devanarayan V, Hock JM. 2000 In vivo comparison of activated protein-1 gene activation in response to human parathyroid hormone (hPTH)(1–34) and hPTH(1–84) in the distal femur metaphyses of young mice. Bone 27(6):819–826.

    Article  PubMed  CAS  Google Scholar 

  71. Chang W, Rewari A, Centrella M, McCarthy TL. 2004. Fosrelated antigen 2 controls protein kinase A-induced CCAAT/enhancer-binding protein beta expression in osteoblasts. J Biol Chem 279(41):42,438–42,444.

    Article  CAS  Google Scholar 

  72. Kveiborg M, Chiusaroli R, Sims NA, et al. 2002 The increased bone mass in deltaFosB transgenic mice is independent of circulating leptin levels. Endocrinology 143(11):4304–4309.

    Article  PubMed  CAS  Google Scholar 

  73. Inoue D, Kido S, Matsumoto T. 2004 Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J Biol Chem 279(48):49,795–49,803.

    Article  CAS  Google Scholar 

  74. Slootweg MC, de Groot RP, Herrmann-Erlee MP, Koornneef I, Kruijer W, Kramer YM. 1991 Growth hormone induces expression of c-jun and junB oncogenes and employs a protein kinase C signal transduction pathway for the induction of c-fos oncogene expression. J Mol Endocrinol 6(2):179–188.

    Article  PubMed  CAS  Google Scholar 

  75. Onyia JE, Hale LV, Miles RR, et al. 1999 Molecular characterization of gene expression changes in ROS 17/2.8 cells cultured in diffusion chambers in vivo. Calcif Tissue Int 65(2):133–138.

    Article  PubMed  CAS  Google Scholar 

  76. Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K. 1997 Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c-fos/c-jun, and induction of osteocalcin expression. Calcif Tissue Int 61(5):404–411.

    Article  PubMed  CAS  Google Scholar 

  77. Sommerfeldt DW, Zhi J, Rubin CT, Hadjiargyrou M. 2002 Proline-rich transcript of the brain (prtb) is a serumresponsive gene in osteoblasts and upregulated during adhesion. J Cell Biochem 84(2):301–308.

    Article  PubMed  CAS  Google Scholar 

  78. Schreiber M, Kolbus A, Piu F, et al. 1999 Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 13(5):607–619.

    PubMed  CAS  Google Scholar 

  79. Wisdom, R, Johnson RS, Moore C. 1999 c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18(1):188–197.

    Article  PubMed  CAS  Google Scholar 

  80. Behrens A, Sibilia M, David JP, et al. 2002 Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J 21(7):1782–1790.

    Article  PubMed  CAS  Google Scholar 

  81. Naito J, Kaji H, Sowa H, Hendy GN, Sugimoto T, Chihara K. 2005 Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD. J Biol Chem 280(6):4785–4791.

    Article  PubMed  CAS  Google Scholar 

  82. Beier F, Taylor AC, LuValle P. 2000 Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes. J Biol Chem 275(17):12,948–12,953.

    Article  CAS  Google Scholar 

  83. Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P. 1999 Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci USA 96(4):1433–1438.

    Article  PubMed  CAS  Google Scholar 

  84. Simonet WS, Lacey DL, Dunstan CR, et al. 1997 Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319.

    Article  PubMed  CAS  Google Scholar 

  85. Yasuda H, Shima N, Nakagawa N, et al. 1998 Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139(3):1329–1337.

    Article  PubMed  Google Scholar 

  86. Yasuda H, Shima N, Nakagawa N, et al. 1998 Osteoclast differentiation factor is a ligand for osteoprotegerin/-osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7):3597–3602.

    Article  PubMed  CAS  Google Scholar 

  87. Lacey DL, Timms E, Tan HL, et al. 1998 Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176.

    Article  PubMed  CAS  Google Scholar 

  88. Hsu H, Lacey DL, Dunstan CR, et al. 1999 Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 96(7):3540–3545.

    Article  PubMed  CAS  Google Scholar 

  89. Li J, Sarosi I, Yan XQ, et al. 2000 RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97(4):1566–1571.

    Article  PubMed  CAS  Google Scholar 

  90. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC. 1998 The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 273(51):34,120–34,127.

    Article  CAS  Google Scholar 

  91. Lomaga MA, yeh WC, Sarosi I, et al. 1999 TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13(8):1015–1024.

    PubMed  CAS  Google Scholar 

  92. Kobayashi N, Kadono Y, Naito A, et al. 2001 Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20(6):1271–1280.

    Article  PubMed  CAS  Google Scholar 

  93. Franzoso G, Carlson L, Xing L, et al. 1997 Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11(24):3482–3496.

    PubMed  CAS  Google Scholar 

  94. Ishida N, Hayashi K, Hoshijima M, et al. 2002 Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277(43):41,147–41,156.

    Article  CAS  Google Scholar 

  95. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M. 2000 Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275(40):31,155–31,161.

    Article  CAS  Google Scholar 

  96. Mansky KC, Sankar U, Han J, Ostrowski MC. 2002 Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 277(13):11,077–11,083.

    Article  CAS  Google Scholar 

  97. Yamamoto A, Miyazaki T, Kadono Y, et al. 2002 Possible involvement of IkappaB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor kappaB ligand. J Bone Miner Res 17(4):612–621.

    Article  PubMed  CAS  Google Scholar 

  98. Karin M, Liu Z, Zandi E. 1997 AP-1 function and regulation. Curr Opin Cell Biol 9(2):240–246.

    Article  PubMed  CAS  Google Scholar 

  99. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR. 1991 Phosphorylation of c-jun mediated by MAP kinases. Nature 353(6345):670–674.

    Article  PubMed  CAS  Google Scholar 

  100. David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF. 2002 JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms. J Cell Sci 115(Pt 22):4317–4325.

    Article  PubMed  CAS  Google Scholar 

  101. Ikeda F, Nishimura R, Matsubara T, et al. 2004 Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114(4):475–484.

    Article  PubMed  CAS  Google Scholar 

  102. Takayanagi H, Kim S, Koga T, et al. 2002 Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901.

    Article  PubMed  CAS  Google Scholar 

  103. Zhu LL, Zaidi S, Moonga BS, Troen BR, Sun L. 2005 RANK-L induces the expression of NFATc1, but not of NFkappaB subunits during osteoclast formation. Biochem Biophys Res Commun 326(1):131–135.

    Article  PubMed  CAS  Google Scholar 

  104. Zhou B, Cron RQ, Wu B, et al. 2002 Regulation of the murine Nfatc1 gene by NFATc2. J Biol Chem 277(12):10,704–10,711.

    Article  CAS  Google Scholar 

  105. Matsuo K, Galson DL, Zhao C, et al. 2004 Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279(25):26,475–26,480.

    Article  CAS  Google Scholar 

  106. Kong YY, Feige U, Sarosi I, et al. 1999 Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304–309.

    Article  PubMed  CAS  Google Scholar 

  107. Takayanagi H, Ogasawara K, Hida S, et al. 2000 T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408(6812):600–605.

    Article  PubMed  CAS  Google Scholar 

  108. Takayanagi H, Kim S, Matsuo K, et al. 2002 RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416(6882):744–749.

    Article  PubMed  CAS  Google Scholar 

  109. Soriano P, Montgomery C, Geske R, Bradley A. 1991 Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64(4):693–702.

    Article  PubMed  CAS  Google Scholar 

  110. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. 1992 Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90(4):1622–1627.

    Article  PubMed  CAS  Google Scholar 

  111. Demiralp B, Chen HL, Koh AJ, Keller ET, McCauley LK. 2002. Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos. Endocrinology 143(10):4038–4047.

    Article  PubMed  CAS  Google Scholar 

  112. Koe RC, Clohisy JS, Tyson DR, Pulumati MR, Cook TF, Partridge NC. 1997 Parathyroid hormone versus phorbol ester stimulation of activator protein-1 gene family members in rat osteosarcoma cells. Calcif Tissue Int 61(1):52–58.

    Article  PubMed  CAS  Google Scholar 

  113. Datta NS, Chen C, Berry JE, McCauley LK, 2005 PTHrP signaling targets cyclin D1 and induces osteoblastic cell growth arrest. J Bone Miner Res 20(6):1051–1064.

    Article  PubMed  CAS  Google Scholar 

  114. DeLuca HF. 2004 Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(Suppl 6):1689S-1696S.

    PubMed  CAS  Google Scholar 

  115. Aslam F, McCabe L, Frenkel B, et al. 1999 AP-1 and vitamin D receptor (VDR) signaling pathways converge at the rat osteocalcin VDR element: requirement for the internal activating protein-1 site for vitamin D-mediated transactivation. Endocrinology 140(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  116. Kondo T, Kitazawa R, Maeda S, Kitazawa S. 2004 1 alpha,25 dihydroxyvitamin D3 rapidly regulates the mouse osteoprotegerin gene through dual pathways. J Bone Miner Res 19(9):1411–1419.

    Article  PubMed  CAS  Google Scholar 

  117. Uchida M, Shima M, Chikazu D, et al. 2001 Transcriptional induction of matrix metalloproteinase-13 (collagenase-3) by 1alpha,25-dihydroxyvitamin D3 in mouse osteoblastic MC3T3-E1 cells. J Bone Miner Res 16(2):221–230.

    Article  PubMed  CAS  Google Scholar 

  118. Paech K, Webb P, Kuiper GG, et al. 1997 Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277(5331):1508–1510.

    Article  PubMed  CAS  Google Scholar 

  119. Cheung E, Acevedo ML, Cole PA, Kraus WL. 2005 Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proc Natl Acad Sci U S A 102(3):559–564.

    Article  PubMed  CAS  Google Scholar 

  120. Schultz JR, Petz LN, Nardulli AM. 2005 Cell- and ligandspecific regulation of promoters containing activator protein-1 and Sp1 sites by estrogen receptors alpha and beta. J Biol Chem 280(1):347–354.

    PubMed  CAS  Google Scholar 

  121. Tou L, Quibria N, Alexander JM. 2001 Regulation of human cbfa1 gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs). Mol Cell Endocrinol 183(1–2):71–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie K. McCauley DDS, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, J., McCauley, L.K. The activating protein-1 transcriptional complex. Clinic Rev Bone Miner Metab 4, 107–122 (2006). https://doi.org/10.1385/BMM:4:2:107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/BMM:4:2:107

Key words