Key Points
-
The versatile nucleotide excision repair (NER) pathway removes helix-distorting DNA damage in a multistep 'cut and patch'-type reaction. Two damage detection subpathways exist: global genomic NER (GG-NER) removes DNA damage anywhere in the genome, and transcription-coupled NER (TC-NER) specifically repairs transcription-blocking lesions in actively transcribed DNA.
-
GG-NER and TC-NER have a remarkable ability to remove a wide variety of structurally unrelated DNA lesions owing to their indirect manner of DNA-damage detection. GG-NER is initiated by the recognition of damage-induced DNA helix distortions, and TC-NER is initiated by stalling of RNA polymerase II (RNA Pol II) at a lesion.
-
Following lesion recognition, the presence of DNA damage is verified, structure-specific endonucleases are recruited to incise the damaged strand on both sides of the lesion and thereby excise the damage along with short flanking sequences. The excised strand is repaired by gap-filling DNA synthesis using the intact complementary strand as a template.
-
The activity of NER proteins is tightly regulated by post-translational modifications. In particular, the DNA-damage recognition steps are extensively regulated by complex ubiquitylation events.
-
Extensive chromatin remodelling facilitates the DNA-damage detection steps of GG-NER and TC-NER, which results in restarting of transcription after repair and restoration of the original chromatin configuration.
-
Processing of lesions during NER results in repair intermediates that can activate the DNA-damage signalling cascade mediated by ATR, which induces phosphorylation and ubiquitylation of histones H2A and H2A.X.
-
NER deficiency is exemplary of the severe consequences of DNA damage. Congenital defects in NER genes cause various human syndromes, which exhibit a wide range of clinical symptoms, including extreme (skin) cancer predisposition, severe neurodevelopmental defects and premature ageing. This clinical heterogeneity can be explained by the diverse lesions repaired by NER, the existence of two NER subpathways and the multifunctionality of several NER proteins. Differences in the fate of lesion-stalled RNA Pol II may explain the extreme heterogeneity of transcription-coupled repair disorders.
Abstract
Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype–phenotype correlations of transcription-coupled repair disorders.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Gates, K. S. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem. Res. Toxicol. 22, 1747–1760 (2009).
Swenberg, J. A. et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 120, S130–145 (2011).
Sale, J. E., Lehmann, A. R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Rev. Mol. Cell Biol. 13, 141–152 (2012).
Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).
Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13, 1831–1843 (1994).
Nishi, R. et al. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol. Cell. Biol. 25, 5664–5674 (2005).
Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223–232 (1998).
Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15, 507–521 (2001).
Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B. & Naegeli, H. DNA repair triggered by sensors of helical dynamics. Trends Biochem. Sci. 32, 494–499 (2007).
Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007). Shows the crystal structure of Rad4, the yeast orthologue of XPC, bound to a DNA substrate that contains a small unpaired region. Rad4 recognizes the local destabilization of the DNA duplex, which is common to many structurally unrelated DNA lesions, and thus explains the ability of Rad4 and XPC to detect a myriad of lesions.
Hoogstraten, D. et al. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J. Cell Sci. 121, 2850–2859 (2008).
Reardon, J. T. & Sancar, A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17, 2539–2551 (2003).
Chu, G. & Chang, E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564–567 (1988).
Wakasugi, M. et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 277, 1637–1640 (2002).
Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1 DDB2 complex. Cell 135, 1213–1223 (2008).
Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).
Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001). Demonstrates, in response to localized UV damage, the sequential assembly of NER proteins and identifies XPC as the main initiator of GG-NER.
Yokoi, M. et al. The xeroderma pigmentosum group C protein complex XPC HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem. 275, 9870–9875 (2000).
Riedl, T., Hanaoka, F. & Egly, J. M. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22, 5293–5303 (2003).
Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074–19083 (2004).
Compe, E. & Egly, J. M. TFIIH: when transcription met DNA repair. Nature Rev. Mol. Cell Biol. 13, 343–354 (2012).
Coin, F., Oksenych, V. & Egly, J. M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26, 245–256 (2007).
Oksenych, V., Bernardes de Jesus, B., Zhovmer, A., Egly, J. M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28, 2971–2980 (2009).
Winkler, G. S. et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J. Biol. Chem. 275, 4258–4266 (2000).
Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36, 642–653 (2009). Shows that upon DNA binding in vitro , TFIIH scans the DNA in a 5′–3′ direction, which suggests that it verifies the presence of a lesion after being recruited by XPC.
Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).
Wolski, S. C. et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 6, e149 (2008).
Pugh, R. A., Wu, C. G. & Spies, M. Regulation of translocation polarity by helicase domain 1 in SF2B helicases. EMBO J. 31, 503–514 (2012).
Mathieu, N., Kaczmarek, N., Ruthemann, P., Luch, A. & Naegeli, H. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr. Biol. 23, 204–212 (2013).
Liu, H. et al. Structure of the DNA repair helicase XPD. Cell 133, 801–812 (2008).
Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B. & Naegeli, H. Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nature Struct. Mol. Biol. 13, 278–284 (2006).
Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell 10, 1163–1174 (2002).
Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008).
Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714–719 (2004).
Theil, A. F. et al. Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality. PLoS Genet. 9, e1003431 (2013).
Luijsterburg, M. S. et al. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. J. Cell Biol. 189, 445–463 (2010).
Vermeulen, W. Dynamics of mammalian NER proteins. DNA Repair 10, 760–771 (2011).
Fagbemi, A. F., Orelli, B. & Scharer, O. D. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair 10, 722–729 (2011).
Godon, C. et al. Generation of DNA single-strand displacement by compromised nucleotide excision repair. EMBO J. 31, 3550–3563 (2012).
Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).
de Laat, W. L. et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 12, 2598–2609 (1998).
Dunand-Sauthier, I. et al. The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J. Biol. Chem. 280, 7030–7037 (2005).
Zotter, A. et al. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV induced DNA damage depends on functional TFIIH. Mol. Cell. Biol. 26, 8868–8879 (2006).
Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP G/CS patients. Mol. Cell 26, 231–243 (2007).
Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009). Shows that during NER, the 5′ incision made by XPF–ERCC1 precedes the 3′ incision made by XPG and that it is sufficient to initiate gap-filling DNA synthesis.
Tsodikov, O. V. et al. Structural basis for the recruitment of ERCC1 XPF to nucleotide excision repair complexes by XPA. EMBO J. 26, 4768–4776 (2007).
Orelli, B. et al. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J. Biol. Chem. 285, 3705–3712 (2010).
Mocquet, V. et al. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J. 27, 155–167 (2008).
Overmeer, R. M. et al. Replication protein A safeguards genome integrity by controlling NER incision events. J. Cell Biol. 192, 401–415 (2011).
Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714–727 (2010).
Moser, J. et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III α in a cell-cycle-specific manner. Mol. Cell 27, 311–323 (2007). Identifies, together with reference 51, cell-cycle-dependent use of different ligases and DNA polymerases for NER gap-filling DNA synthesis and ligation.
Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for U.V. light-induced apoptosis. Oncogene 13, 823–831 (1996).
Marietta, C. & Brooks, P. J. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep. 8, 388–393 (2007).
Hendriks, G. et al. Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr. Biol. 20, 170–175 (2010).
Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958–970 (2008).
Vermeulen, W. & Fousteri, M. Mammalian transcription-coupled excision repair. Cold Spring Harb. Perspect. Biol. 5, a012625 (2013).
Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 23, 471–482 (2006).
Schwertman, P. et al. UV sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nature Genet. 44, 598–602 (2012).
de Waard, H. et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol. Cell. Biol. 24, 7941–7948 (2004).
Stevnsner, T., Muftuoglu, M., Aamann, M. D. & Bohr, V. A. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech. Ageing Dev. 129, 441–448 (2008).
Kuraoka, I. et al. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J. Biol. Chem. 278, 7294–7299 (2003).
Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 279, 18511–18520 (2004).
Larsen, E., Kwon, K., Coin, F., Egly, J. M. & Klungland, A. Transcription activities at 8 oxoG lesions in DNA. DNA Repair 3, 1457–1468 (2004).
Menoni, H., Hoeijmakers, J. H. & Vermeulen, W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J. Cell Biol. 199, 1037–1046 (2012).
Nardo, T. et al. A UV sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc. Natl Acad. Sci. USA 106, 6209–6214 (2009).
Tornaletti, S., Reines, D. & Hanawalt, P. C. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem. 274, 24124–24130 (1999).
Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 1829, 151–157 (2013).
Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202–210 (2010).
Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair–transcription-coupling factor. Mol. Cell. Biol. 20, 7643–7653 (2000).
Beerens, N., Hoeijmakers, J. H., Kanaar, R., Vermeulen, W. & Wyman, C. The CSB protein actively wraps DNA. J. Biol. Chem. 280, 4722–4729 (2005).
Bensimon, A., Aebersold, R. & Shiloh, Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett. 585, 1625–1639 (2011).
Sousa, F. G. et al. PARPs and the DNA damage response. Carcinogenesis 33, 1433–1440 (2012).
Pines, A. et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 199, 235–249 (2012). Shows that PARylation facilitates GG-NER through stabilization of DDB2 and recruitment of the chromatin remodeller ALC1.
Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795–807 (2013).
Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biol. 14, 1089–1098 (2012).
Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461–467 (2009).
Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).
Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).
Jacq, X., Kemp, M., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes & DNA damage response pathways. Cell Biochem. Biophys. (2013).
Vertegaal, A. C. Uncovering ubiquitin and ubiquitin-like signaling networks. Chem. Rev. 111, 7923–7940 (2011).
Wang, Q. E. et al. DNA repair factor XPC is modified by SUMO 1 and ubiquitin following UV irradiation. Nucleic Acids Res. 33, 4023–4034 (2005).
Poulsen, S. L. et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J. Cell Biol. 201, 797–807 (2013).
Sugasawa, K. et al. UV induced ubiquitylation of XPC protein mediated by UV DDB-ubiquitin ligase complex. Cell 121, 387–400 (2005). Reports that ubiquitylation of XPC by the UV–DDB complex regulates its DNA damage affinity.
Hannah, J. & Zhou, P. Regulation of DNA damage response pathways by the cullin–RING ubiquitin ligases. DNA Repair 8, 536–543 (2009).
Kapetanaki, M. G. et al. The DDB1–CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV damaged DNA sites. Proc. Natl Acad. Sci. USA 103, 2588–2593 (2006).
Scrima, A. et al. Detecting UV lesions in the genome: The modular CRL4 ubiquitin ligase does it best! FEBS Lett. 585, 2818–2825 (2011).
Moser, J. et al. The UV damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV induced photo lesions. DNA Repair 4, 571–582 (2005).
Liu, L. et al. CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol. Cell 34, 451–460 (2009).
Okuda, Y. et al. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair 3, 1285–1295 (2004).
Ng, J. M. et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23 dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 17, 1630–1645 (2003).
Bergink, S. et al. Recognition of DNA damage by XPC coincides with disruption of the XPC RAD23 complex. J. Cell Biol. 196, 681–688 (2012).
Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 20, 1429–1434 (2006).
Nakazawa, Y. et al. Mutations in UVSSA cause UV sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nature Genet. 44, 586–592 (2012).
Zhang, X. et al. Mutations in UVSSA cause UV sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nature Genet. 44, 593–597 (2012). Shows, together with references 59 and 94, the cloning and functional analysis of UVSSA in TC-NER, the causative gene of UVSS (the last unresolved NER-deficient disorder).
Fei, J. & Chen, J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J. Biol. Chem. 287, 35118–35126 (2012).
Anindya, R. et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 38, 637–648 (2010).
Woudstra, E. C. et al. A Rad26 Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002).
Green, C. M. & Almouzni, G. When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep. 3, 28–33 (2002).
Smerdon, M. J. DNA repair and the role of chromatin structure. Curr. Opin. Cell Biol. 3, 422–428 (1991).
Gong, F., Kwon, Y. & Smerdon, M. J. Nucleotide excision repair in chromatin and the right of entry. DNA Repair 4, 884–896 (2005).
Soria, G., Polo, S. E. & Almouzni, G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol. Cell 46, 722–734 (2012).
Guerrero-Santoro, J. et al. The cullin 4B based UV damaged DNA-binding protein ligase binds to UV damaged chromatin and ubiquitinates histone H2A. Cancer Res. 68, 5014–5022 (2008).
Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4 DDB ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22, 383–394 (2006).
Luijsterburg, M. S. et al. DDB2 promotes chromatin decondensation at UV induced DNA damage. J. Cell Biol. 197, 267–281 (2012).
Lans, H., Marteijn, J. A. & Vermeulen, W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5, 4 (2012).
Hara, R. & Sancar, A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol. Cell. Biol. 22, 6779–6787 (2002).
Zhang, L., Zhang, Q., Jones, K., Patel, M. & Gong, F. The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell Cycle 8, 3953–3959 (2009).
Zhao, Q. et al. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J. Biol. Chem. 284, 30424–30432 (2009).
Jiang, Y. et al. INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway. Proc. Natl Acad. Sci. USA 107, 17274–17279 (2010).
Datta, A. et al. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat. Res. 486, 89–97 (2001).
Rapic-Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M. & Levine, A. S. Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res. 30, 2588–2598 (2002).
Martinez, E. et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol. Cell. Biol. 21, 6782–6795 (2001).
Yu, S., Teng, Y., Waters, R. & Reed, S. H. How chromatin is remodelled during DNA repair of UV induced DNA damage in Saccharomyces cerevisiae. PLoS Genet. 7, e1002124 (2011).
Guo, R., Chen, J., Mitchell, D. L. & Johnson, D. G. GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic Acids Res. 39, 1390–1397 (2011).
Rubbi, C. P. & Milner, J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J. 22, 975–986 (2003).
Muftuoglu, M., Selzer, R., Tuo, J., Brosh, R. M. Jr & Bohr, V. A. Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene. Gene 283, 27–40 (2002).
Citterio, E. et al. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J. Biol. Chem. 273, 11844–11851 (1998).
Selzer, R. R. et al. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV induced DNA damage and 8 oxoguanine lesions in human cells. Nucleic Acids Res. 30, 782–793 (2002).
Lake, R. J., Geyko, A., Hemashettar, G., Zhao, Y. & Fan, H. Y. UV induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N terminal autorepression. Mol. Cell 37, 235–246 (2010).
Cho, I., Tsai, P. F., Lake, R. J., Basheer, A. & Fan, H. Y. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1 like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet. 9, e1003407 (2013).
Dinant, C. et al. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV induced DNA damage. Mol. Cell 51, 469–479 (2013).
Oksenych, V. et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet. 9, e1003611 (2013).
Adam, S., Polo, S. E. & Almouzni, G. Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell 155, 94–106 (2013). Provides evidence, together with reference 122, for extensive chromatin remodelling during TC-NER, which implicates accelerated H2A–H2B exchange by the histone chaperone complex FACT (facilitates chromatin transcription) and incorporation of H3.3 by HIRA in this process.
Gaillard, P. H. et al. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86, 887–896 (1996).
Green, C. M. & Almouzni, G. Local action of the chromatin assembly factor CAF 1 at sites of nucleotide excision repair in vivo. EMBO J. 22, 5163–5174 (2003).
Polo, S. E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell 127, 481–493 (2006).
Giglia-Mari, G. et al. Differentiation driven changes in the dynamic organization of basal transcription initiation. PLoS Biol. 7, e1000220 (2009).
Liu, S. C., Parsons, S. & Hanawalt, P. C. DNA repair in cultured keratinocytes. J. Invest. Dermatol. 81, 179s–183s (1983).
Li, G., Ho, V. C., Mitchell, D. L., Trotter, M. J. & Tron, V. A. Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes. Am. J. Pathol. 150, 1457–1464 (1997).
Nouspikel, T. & Hanawalt, P. C. Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol. Cell. Biol. 20, 1562–1570 (2000).
Nouspikel, T. & Hanawalt, P. C. Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme. Proc. Natl Acad. Sci. USA 103, 16188–16193 (2006).
Nouspikel, T. & Hanawalt, P. C. DNA repair in terminally differentiated cells. DNA Repair 1, 59–75 (2002).
van der Wees, C. et al. Nucleotide excision repair in differentiated cells. Mutat. Res. 614, 16–23 (2007).
Nouspikel, T. P., Hyka-Nouspikel, N. & Hanawalt, P. C. Transcription domain-associated repair in human cells. Mol. Cell. Biol. 26, 8722–8730 (2006).
Lans, H. et al. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet. 6, e1000941 (2010). Reports that in C. elegans germ cells, GG-NER is active and maintains the entire genome, whereas in later stage somatic cells TC-NER rather than GG-NER is important.
Jansen, J. et al. Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity in vitro. Nucleic Acids Res. 29, 1791–1800 (2001).
Xu, G. et al. Nucleotide excision repair activity varies among murine spermatogenic cell types. Biol. Reprod. 73, 123–130 (2005).
Roerink, S. F., Koole, W., Stapel, L. C., Romeijn, R. J. & Tijsterman, M. A broad requirement for TLS polymerases η and κ, and interacting sumoylation and nuclear pore proteins, in lesion bypass during C. elegans embryogenesis. PLoS Genet. 8, e1002800 (2012).
de Waard, H. et al. Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts. DNA Repair 7, 1659–1669 (2008).
DiGiovanna, J. J. & Kraemer, K. H. Shining a light on xeroderma pigmentosum. J. Invest. Dermatol. 132, 785–796 (2012).
Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445–476 (2004).
Brooks, P. J. The 8,5′ cyclopurine-2′ deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair 7, 1168–1179 (2008).
Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145, 1388–1396 (2007).
Niedernhofer, L. J., Bohr, V. A., Sander, M. & Kraemer, K. H. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. Mech. Ageing Dev. 132, 340–347 (2011).
Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair 1, 1027–1038 (2002).
Ljungman, M. & Lane, D. P. Transcription — guarding the genome by sensing DNA damage. Nature Rev. Cancer 4, 727–737 (2004).
Hoeijmakers, J. H. DNA damage, aging, and cancer. New Engl. J. Med. 361, 1475–1485 (2009).
Laugel, V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech. Ageing Dev. 134, 161–170 (2013).
Dolle, M. E. et al. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat. Res. 596, 22–35 (2006).
Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006). Describes the identification of the first patient found to carry a mutation in the gene encoding XPF, which causes prominent symptoms of premature ageing; a corresponding mouse Ercc1 mutant exhibits a very similar progeroid phenotype. Expression profiling of mouse tissues reveals that Ercc1 mutant mice also have suppressed growth and upregulated cellular defences resembling the response to caloric restriction, which promotes longevity. These features are presumably an attempt to counteract the accelerated ageing.
Garinis, G. A., van der Horst, G. T., Vijg, J. & Hoeijmakers, J. H. DNA damage and ageing: new-age ideas for an age-old problem. Nature Cell Biol. 10, 1241–1247 (2008).
Andressoo, J. O. et al.An Xpb mouse model for combined xeroderma pigmentosum and Cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol. Cell. Biol. 29, 1276–1290 (2009).
Niedernhofer, L. J. Nucleotide excision repair deficient mouse models and neurological disease. DNA Repair 7, 1180–1189 (2008).
de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002).
Vermeulen, W. et al. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nature Genet. 27, 299–303 (2001).
Scharer, O. D. XPG: its products and biological roles. Adv. Exp. Med. Biol. 637, 83–92 (2008).
Trego, K. S. et al. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10, 1998–2007 (2011).
Gregg, S. Q., Robinson, A. R. & Niedernhofer, L. J. Physiological consequences of defects in ERCC1 XPF DNA repair endonuclease. DNA Repair 10, 781–791 (2011).
Jaspers, N. G. et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am. J. Hum. Genet. 80, 457–466 (2007).
Bogliolo, M. et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92, 800–806 (2013).
Kashiyama, K. et al. Malfunction of nuclease ERCC1 XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92, 807–819 (2013).
Dolle, M. E. et al. Broad segmental progeroid changes in short-lived Ercc1−/Δ7 mice. Pathobiol. Aging Age Relat. Dis. 1, 7219 (2011).
Schumacher, B. et al. Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet. 4, e1000161 (2008).
Spivak, G. UV sensitive syndrome. Mutat. Res. 577, 162–169 (2005).
Horibata, K. et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV sensitive syndrome but not Cockayne syndrome. Proc. Natl Acad. Sci. USA 101, 15410–15415 (2004).
Lukas, J., Lukas, C. & Bartek, J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nature Cell Biol. 13, 1161–1169 (2011).
Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).
Nam, E. A. & Cortez, D. ATR signalling: more than meeting at the fork. Biochem. J. 436, 527–536 (2011).
Marini, F. et al. DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc. Natl Acad. Sci. USA 103, 17325–17330 (2006).
Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186, 835–847 (2009).
Hanasoge, S. & Ljungman, M. H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis 28, 2298–2304 (2007).
MacDougall, C. A., Byun, T. S., Van, C., Yee, M. C. & Cimprich, K. A. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007).
Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50–62 (2010).
Sertic, S. et al. Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc. Natl Acad. Sci. USA 108, 13647–13652 (2011). Shows, together with reference 174, that exonuclease 1 (EXO1)-mediated processing of NER intermediates generates large ssDNA gaps. Demonstrates further that intermediates produced during processing of NER lesions, rather than the lesions themselves, stimulate checkpoint signalling.
Bergink, S. et al. DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev. 20, 1343–1352 (2006).
Mattiroli, F. et al. RNF168 ubiquitinates K13 15 on H2A/H2AX to drive DNA damage signaling. Cell 150, 1182–1195 (2012).
Sy, S. M. et al. Critical roles of ring finger protein RNF8 in replication stress responses. J. Biol. Chem. 286, 22355–22361 (2011).
Acknowledgements
The authors acknowledge financial support from: the European commission FP7-Health-2008-200880, HEALTH-F2-2010-259893; US National Institutes of Health and National Institute on Ageing (1PO1 AG-17242-02), US National Institute of Environmental Health Sciences (NIEHS) (1UO1 ES011044); the Royal Academy of Arts and Sciences of the Netherlands (academic professorship awarded to J.H.J.H.); European Research Council Advanced Grants to J.H.J.H. and W.V.; a Koningin Wilhelmina Onderzoeksprijs (KWO) grant from the Dutch Cancer Society; Horizon Zenith project funding from the National Genomics Initiative; Earth and Life Sciences TOP grant to J.H.J.H. and Medical Sciences TOP grant to W.V., by the Dutch Science Organization (NWO); and an Erasmus MC fellowship to J.A.M.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Direct reversal
-
A one-step DNA repair process involving an enzyme that reverts the DNA lesion to the original nucleotides. Examples are 06-methylguanine DNA methyltransferase (MGMT) and photolyases. MGMT specifically transfers the methyl group from guanine methylated at the 06 position to an internal Cys145 residue in MGMT. This causes a structural change in the enzyme that induces its degradation. Photolyases, which are not found in placental mammals, bind to ultraviolet-radiation-induced photoproducts (either cyclobutane–pyrimidine dimers or 6–4 pyrimidine–pyrimidone photoproducts). With the aid of two light-capturing cofactors, photolyases use the energy of visible light to split these dimers into monomers.
- Base excision repair
-
(BER). This pathway removes oxidative and alkylating DNA lesions. Damaged bases are recognized and cut out from the DNA by lesion-specific glycosylases, which is followed by cleavage of the phosphodiester backbone and gap-filling DNA synthesis of one or a few nucleotides of the resulting single-stranded DNA.
- Interstrand crosslink repair
-
A repair pathway that removes DNA bases from complementary strands that are covalently crosslinked. Defects in this pathway cause Fanconi anaemia.
- Cyclobutane–pyrimidine dimers
-
(CPDs). The most common ultraviolet-radiation-induced DNA lesion, which is formed by covalently linking the C5 and C6 carbon atoms of two adjacent pyrimidines.
- 6–4 pyrimidine–pyrimidone photoproducts
-
(6–4PPs). The second most common ultraviolet-radiation-induced DNA lesion, formed by a covalent link between the C4 and C6 carbon atoms of two adjacent pyrimidines. This causes a greater distortion of the DNA helix than cyclobutane–pyrimidine dimers (CPDs). It is more efficiently detected and repaired by mammalian global genome nucleotide excision repair than CPDs.
- DNA probing
-
A process in which DNA-binding proteins freely diffuse through the nucleus and detect DNA damage through a repetitive sampling mechanism (that is, transient DNA binding).
- DNA scanning
-
A process in which DNA-binding proteins slide along the DNA over long distances.
- UV–DDB
-
(Ultraviolet radiation–DNA damage-binding protein). A complex formed by the DDB1 and DDB2 proteins, which is part of a larger complex including the CRL (cullin 4A (CUL4A)–regulator of cullins 1 (ROC1) E3 ubiquitin ligase) complex. It has a high affinity for DNA lesions caused by UV radiation and assists XPC-mediated DNA damage recognition during global genome nucleotide excision repair.
- CRL
-
(Cullin 4A (CUL4A)–regulator of cullins 1 (ROC1) E3 ubiquitin ligase). A modular E3 ubiquitin ligase complex consisting of the RING finger protein ROC1 and the CUL4A scaffold protein, which interacts with DNA damage-binding protein 1 (DDB1). Its target specificity is regulated by switching interactions with WD40- domain-containing substrate proteins, such as DDB2 in global genome nucleotide excision repair (GG-NER) and Cockayne syndrome protein CSA in transcription-coupled NER (TC-NER).
- WD40 domain
-
A short structural protein motif with β-propeller architecture that is believed to be involved in protein–protein interactions.
- TFIIH
-
(Transcription initiation factor IIH). An essential transcription initiation complex that is also pivotal for nucleotide excision repair. In both processes it functions to unwind DNA using its two helicase subunits.
- CAK subcomplex
-
(CDK-activating kinase subcomplex). A subcomplex of TFIIH (transcription initiation factor IIH) that consists of cyclin-dependent kinase 7 (CDK7), cyclin H (CCNH) and MNAT1 (also known as MAT1). The CAK subcomplex has an important function in transcription initiation as it phosphorylates the largest subunit of RNA polymerase II, but it is not required for nucleotide excision repair and dissociates from TFIIH.
- Damage avoidance
-
A process that occurs when DNA replication encounters an unrepaired DNA lesion. Such lesions block the regular replication machinery on the damaged strand. However, replication of the undamaged complementary strand can still continue, which generates a daughter strand with the same sequence as the damaged template. The lesion in the original template strand can be bypassed by transiently switching replication to the newly synthesized daughter strand.
- Cockayne syndrome
-
A human disorder characterized by ultraviolet radiation sensitivity, progeria, and neurological and developmental abnormalities. The syndrome is caused by mutations in several genes encoding proteins involved in transcription-coupled nucleotide excision repair (TC-NER).
- Oxidative DNA damage
-
A large group of DNA lesions that are mainly caused by reactive oxygen species (ROS) that oxidize nucleotides at several positions. Oxidative DNA lesions are unavoidable, as ROS are natural products of cellular metabolism and the immune system, or are formed by environmental chemicals and radiation.
- Poly(ADP-ribosyl)ation
-
(PARylation). The polymerization of ADP–ribose units from donor NAD+ molecules on target proteins by enzymes of the poly(ADP-ribosyl) polymerase (PARP) family. PARP enzymes detect single-strand breaks in DNA and regulate the efficiency of several lesion repair mechanisms by PARylation of damaged chromatin and signalling proteins.
- COP9 signalosome
-
A multisubunit protease that regulates the activity of CRL (cullin 4A (CUL4A)–regulator of cullins 1 (ROC1) E3 ubiquitin ligase) complexes by removing the ubiquitin-like protein NEDD8.
- Chromatin remodelling
-
Dynamic alteration of the chromatin structure to regulate access of proteins to DNA, which is induced by post-translational modifications of histone tails and ATP-dependent remodelling complexes that move or restructure nucleosomes.
- Xeroderma pigmentosum
-
A human disorder caused by defects in genes that encode proteins involved in global genome nucleotide excision repair (GG-NER). It is characterized by ultraviolet radiation hypersensitivity and an increased risk of skin cancer and internal tumours.
- Xeroderma pigmentosum complementation group
-
Cells from patients with xeroderma pigmentosum are classified into eight genetic complementation groups (XP-A to XP-G and XP-Variant), which are based on their respective gene and protein defects.
- De Sanctis–Cacchione syndrome
-
A severe and rare form of xeroderma pigmentosum in which patients display accelerated neurodegeneration, microcephaly, retarded growth and impaired sexual development.
- Illudin S
-
A natural (mushroom-derived) sesquiterpene drug, which causes DNA lesions that block replication and transcription. These lesions are repaired by transcription-coupled nucleotide excision repair (TC-NER) but ignored by global genome nucleotide excision repair (GG-NER).
- Progeroid phenotype
-
A phenotype of accelerated ageing that is exhibited by patients at a young age.
- Cerebro-oculo-facio-skeletal syndrome
-
(COFS). A very severe human disorder resembling Cockayne syndrome. It involves the neurological system, eyes, face, and skeleton, and results in a very short life expectancy of 2–3 years. It is caused by severe mutations in genes encoding proteins involved in transcription-coupled nucleotide excision repair as well as in several other DNA repair processes.
- Single-strand annealing
-
An error-prone mechanism that repairs double-strand breaks situated between two repetitive DNA sequences. It functions by resecting the broken ends, which is followed by homologous pairing of the repeats, gap-filling DNA synthesis and ligation. The sequences between the repeats are lost as the consequence of this process.
- UV-sensitive syndrome
-
(UVSS). A human disorder characterized by mild ultraviolet radiation sensitivity of the skin. It is caused by inactivating mutations in the UVSSA gene (which encodes UV-stimulated scaffold protein A) and specific mutations in the genes encoding Cockayne syndrome proteins CSA and CSB, which are involved in transcription-coupled nucleotide excision repair (TC-NER).
Rights and permissions
About this article
Cite this article
Marteijn, J., Lans, H., Vermeulen, W. et al. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15, 465–481 (2014). https://doi.org/10.1038/nrm3822
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrm3822