Abstract
GABA (γ-amino-butyric acid), the principal inhibitory neurotransmitter in the brain, signals through ionotropic (GABAA/GABAC) and metabotropic (GABAB) receptor systems. Here we report the cloning of GABAB receptors. Photoaffinity labelling experiments suggest that the cloned receptors correspond to two highly conserved GABAB receptor forms present in the vertebrate nervous system. The cloned receptors negatively couple to adenylyl cyclase and show sequence similarity to the metabotropic receptors for the excitatory neurotransmitter L-glutamate.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bowery, N. G. GABAB receptor pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109–147 (1993).
Seeburg, P. H. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365 (1993).
Bittiger, H., Froestl, W., Mickel, S. J. & Olpe, H. R. GABAB receptor antagonists: from synthesis to therapeutic applications. Trends Pharmacol Sci. 14, 391–394 (1993).
Kerr, D. I. & Ong, J. GABAB receptors: targets for drug development. Drug Discovery Today 1, 371–380 (1996).
Smith, G. B. & Olsen, R. W. Functional domains of GABAA receptors. Trends Neurosci. 16, 162–168 (1995).
Misgeld, U., Bijak, M. & Jarolimek, W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog. Neurobiol. 46, 423–462 (1995).
Nakanishi, S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13, 1031–1037 (1994).
Pin, J.-P. & Duvoisin, R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1–26 (1995).
Strader, C. D., Fong, T. M., Graziano, M. P. & Tota, M. R. The family of G-protein-coupled receptors. FASEB J. 9, 745–754 (1995).
Hill, D. R. & Bowery, N. G. 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290, 149–152 (1981).
Dutar, P. & Nicoll, R. A. A physiological role for GABAB receptors in the central nervous system. Nature 332, 156–158 (1988).
Bonanno, G. & Raiteri, M. Functional evidence for multiple GABAB receptor subtypes in the rat cerebral cortex. J. Pharmacol. Exp. Ther. 262, 114–118 (1992).
Bonanno, G. & Raiteri, M. Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261 (1993).
Cunningham, M. D. & Enna, S. J. Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res. 720, 220–224 (1996).
De Erausquin, G., Brooker, G., Costa, E. & Wojcik, W. J. Stimulation of high affinity GABABreceptors potentiates the depolarization-induced increase of intraneuronal ionized calcium content in cerebellar granule neurons. Mol. Pharmacol. 42, 407–414 (1992).
Lanza, M., Fassio, A., Gemignani, A., Bonanno, G. & Raiteri, M. CGP52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur. J. Pharmacol. 237, 191–195 (1993).
Davies, C. H., Starkey, S. J., Pozza, M. F. & Collingridge, G. L. GABAB autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).
Olpe, H.-R., Woerner, W. & Ferrat, T. Stimulation parameters determine role of GABAB receptors in long-term potentiation. Experientia 49, 542–546 (1993).
Nakayasu, H., Nishikawa, M., Mizutani, H., Kimura, H. & Kuriyama, K. Immunoaffinity purification and characterization of GABAB receptors from bovine cerebral cortex. J. Biol. Chem. 268, 8658–8664 (1993).
Hill, D. R., Bowery, N. G. & Hudson, A. L. Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem. 42, 652–657 (1984).
Bormann, J. & Feigenspan, A. GABAc receptors. Trends Neurosci. 18, 515–519 (1995).
Zuiderwijk, M., Veenstra, E., Lopes Da Silva, F. H. & Ghijsen, W. E. J. M. Effects of uptake carrier blockers SK & F89976-A and L- trans-PDC on in vivo release of amino acids in rat hippocampus. Eur. J. Pharmacol. 307, 275–282 (1996).
Kerr, D. I. & Ong, J. GABAB receptors. Pharmacol. Ther. 67, 187–246 (1995).
Froestl, W., Mickel, S. J., Schmutz, M. & Bittiger, H. Potent, orally active GABAB receptor antagonists. Pharmacol. Rev. Commun. 8, 127–133 (1996).
Turgeon, S. M. & Albin, R. L. Postnatal ontogeny of GABAB binding in rat brain. Neuroscience 62, 601–613 (1994).
von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14, 4683–4690 (1986).
Devereux, J., Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395 (1984).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. USA 85, 2444–2448 (1988).
Brown, E. M. et al. Cloning and characterization of an extracellular Ca2+ -sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
Chinkers, M. et al. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 78–83 (1989).
Auchampach, J. A., Oliver, M. G., Anderson, D. C. & Manning, A. M. Cloning, sequence comparison and in vivo expression of the gene encoding rat P-selectin. Gene 145, 251–255 (1994).
Hourcade, D., Miesner, D. R., Atkinson, J. P. & Holers, V. M. Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1. J. Exp. Med. 168, 1255–1270 (1988).
Landick, R. & Oxender, D. L. The complete nucleotide sequences of the Escherichia coli LIV-BP and LS-BP genes. Implications for the mechanism of high-affinity branched-chain amino acid transport. J. Biol. Chem. 260, 8257–8261 (1985).
Ohnishi, K., Nakazima, A., Matsubara, K. & Kiritani, K. Cloning and nucleotide sequences of livB and livC, the structural genes encoding binding proteins of the high-affinity branched-chain amino acid transport in Salmonella typhimurium. J. Biochem. (Tokyo) 107, 202–208 (1990).
O'Hara, P. J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1993).
Gomeza, J. et al. The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G-proteins. J. Biol. Chem. 271, 2199–2205 (1996).
Chu, D. C., Albin, R. L., Young, A. B. & Penney, J. B. Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34, 341–357 (1990).
Bowery, N. G. & Pratt, G. D. GABAB receptors as targets for drug action. Arzneim. Forsch. Drug Res. 42, 215–223 (1992).
Wojcik, W. J. & Neff, N. H. GABAB receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol Pharmacol. 25, 24–28 (1984).
Froestl, W. et al. Phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists. J. Med. Chem. 38, 3297–3312 (1995).
Stuart, G. J. & Redman, S. J. The role of GABAA and GABAB receptors in presynaptic inhibition of a la EPSPs in cat spinal motoneurones. J. Physiol. 447, 675–692 (1992).
Gemignani, A., Paudice, P., Bonanno, G. & Raiteri, M. Pharmacological discrimination between GABAB receptors regulating cholecystokinin and somatostatin release from rat neocortex synapto-somes. Mol. Pharmacol. 46, 558–562 (1994).
Knight, A. R. & Bowery, N. G. The pharmacology of adenylyl cyclase modulation by GABAB receptors in rat brain slices. Neuropharmacology 35, 703–712 (1996).
Wojcik, W. J., Travagli, R. A., Costa, E. & Bertolino, M. Baclofen inhibits with high affinity an L-type-like voltage-dependent calcium channel in cerebellar granule cell cultures. Neuropharmacology 29, 969–972 (1990).
Law, S. F., Yasuda, K., Bell, G. I. & Reisine, T. Giα3 and Goα selectively associate with the cloned somatostatin receptor subtype SSTR2. J. Biol. Chem. 268, 10721–10727 (1993).
Kenakin, T. The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol. Rev. 48, 413–463 (1996).
Karbon, E. W. & Enna, S. J. Characterization of the relationship between GABAB agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53–59 (1985).
Bischoff, S., Barhanin, B., Bettler, B., Mulle, C. & Heinemann, S. F. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J. Comp. Neurol. (in the press).
Olpe, H.-R. et al. CGP35348: a centrally active blocker of GABAB receptors. Eur. J. Pharmacol. 187, 27–38 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kaupmann, K., Huggel, K., Heid, J. et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246 (1997). https://doi.org/10.1038/386239a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/386239a0
This article is cited by
-
Specific pharmacological and Gi/o protein responses of some native GPCRs in neurons
Nature Communications (2024)
-
Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression
Nature Cell Biology (2022)
-
Targeting GABA signalling for cancer treatment
Nature Cell Biology (2022)
-
GABA as a signalling molecule: Possible mechanism for its enhanced commercial production by cyanobacteria
Journal of Applied Phycology (2022)
-
EMX2-GPR156-Gαi reverses hair cell orientation in mechanosensory epithelia
Nature Communications (2021)