Skip to main content
Log in

Antioxidant capacity and structural changes of human serum albumin from patients in advanced stages of diabetic nephropathy and the effect of the dialysis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Changes in the antioxidant capacity of albumin and alterations of the albumin structural conformation were examined in patients in advanced stages of diabetes nephropathy. Human serum albumin was purified from diabetic patients in pre-dialysis (glomerular filtration rate [GFR] between 15 and 29 ml min−1 1.73 m−2) and those in dialysis (GFR ≤ 15 ml min−1 1.73 m−2) and then compared with albumin from patients with a normal GFR (>90 ml min−1 m−2). We evaluated the antioxidant capacity of albumin using an enhanced chemiluminescence-based assay and thiol group content, and the structural changes were evaluated by circular dichroism and fluorescence spectroscopy. The antioxidant capacity and thiol content of albumin from patients in advanced stages of diabetic nephropathy were markedly reduced. The circular dichroism spectra showed a mean albumin α-helix content reduction from 44 to 37 % and from 44 to 30 % between the control group and pre-dialysis and dialysis patients, respectively. Additionally, the fluorescence intensity was reduced by 4.2 and 13 % for the groups 4 and 5, respectively, in relation with the control. These data provide evidence for the partial denaturation of albumin and exacerbated oxidative stress among patients in advanced stages of diabetes nephropathy before and even after dialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zelmanovitz T, Gerchman F, Balthazar AS, Thomazelli FCS, Jorge D, Matos JD, Canani LH (2009) Diabetic nephropathy. Diabetol Metab Syndr 1:1–17

    Article  Google Scholar 

  2. Calabrese V, Mancuso C, Sapienza M, Puleo E, Calafato S, Cornelius C, Finocchiaro M, Mangiameli A, Di Mauro M, Stella AMG, Castellino P (2007) Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones 12:299–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean. Brit J Pharmacol 142:231–255

    Article  CAS  Google Scholar 

  4. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  PubMed  Google Scholar 

  5. Otagiri M, Chuang VT (2009) Pharmaceutically important pre- and posttranslational modifications on human serum albumin. Biol Pharm Bull 32:527–534

    Article  CAS  PubMed  Google Scholar 

  6. Christodoulou J, Sadler PJ, Tucker A (1994) A new structural transition of serum albumin dependent on the state of Cys34. Eur J Biochem 225:363–368

    Article  CAS  PubMed  Google Scholar 

  7. Varshney A, Rehan M, Subbarao N, Rabbani G, Khan RH (2011) Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity and impaired drug binding. PLoS ONE 6:1–15

    Article  Google Scholar 

  8. Oettl K, Stauber RE (2007) Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol 151:580–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Turell L, Carballal S, Botti H, Radi R, Alvarez B (2009) Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Braz J Med Biol Res 42:305–311

    Article  CAS  PubMed  Google Scholar 

  10. Himmelfarb J, McMonagle E (2001) Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int 60:358–363

    Article  CAS  PubMed  Google Scholar 

  11. Faure P, Tamisier R, Baguet JP, Favier A, Halimi S, Levy PE, Pepin J (2008) Impairment of serum albumin antioxidant properties in obstructive sleep apnoea syndrome. Eur Respir J 31:1046–1053

    Article  CAS  PubMed  Google Scholar 

  12. Watanabe A, Matsuzaki S, Moriwaki H, Suzuki K, Nishiguchi S (2004) Problems in serum albumin measurement and clinical significance of albumin microheterogeneity in cirrhotics. Nutrition 20:351–357

    Article  CAS  PubMed  Google Scholar 

  13. Faure P, Troncy L, Lecomte Wiernsperger MN, Lagarde M, Ruggiero D, Halimi S (2005) Albumin antioxidant capacity is modified by methylglyoxal. Diabetes Metab 31:169–177

    Article  CAS  PubMed  Google Scholar 

  14. Terawaki H, Era S, Nakayama M, Hosoya T (2011) Decrease in reduced-form albumin among chronic kidney disease patients: new insights in cardiovascular complications. Ther Apher Dial 15:156–160

    Article  CAS  PubMed  Google Scholar 

  15. Matsuyama Y, Terawaki H, Terada T, Era S (2009) Albumin thiol oxidation and serum protein carbonyl formation are progressively enhanced with advancing stages of chronic kidney disease. Clin Exp Nephrol 13:308–315

    Article  CAS  PubMed  Google Scholar 

  16. Taverna M, Marie AL, Mira JP, Guidet B (2013) Specific antioxidant properties of human serum albumin. Ann Intensive Care 3:4

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cohen MP (2003) Intervention strategies to prevent pathogenetic effects of glycated albumin. Arch Biochem Biophys 419:25–30

    Article  CAS  PubMed  Google Scholar 

  18. Rondeau P, Armenta S, Caillens H, Chesne S, Bourdon E (2007) Assessment of temperature effects on beta-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: relations between structural changes and antioxidant properties. Arch Biochem Biophys 460:141–150

    Article  CAS  PubMed  Google Scholar 

  19. Wratten ML, Sereni L, Tetta C (2001) Oxidation of albumin is enhanced in the presence of uremic toxins. Ren Fail 23:563–571

    Article  CAS  PubMed  Google Scholar 

  20. Soejima A, Kaneda F, Manno S, Matsuzawa N, Kouji H, Nagasawa T, Era S, Takakuwa Y (2002) Useful markers for detecting decreased serum antioxidant activity in hemodialysis patients. Am J Kidney Dis 39:1040–1046

    Article  CAS  PubMed  Google Scholar 

  21. American Diabetes Association (2013) Standards of medical care in diabetes–2013. Diabetes Care 36:S11–S66

    Article  PubMed Central  Google Scholar 

  22. Riener CK, Kada G, Gruber HJ (2002) Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4, 4′-dithiodipyridine. Anal Bioanal Chem 373:266–276

    Article  CAS  PubMed  Google Scholar 

  23. Medina-Navarro R, Durán-Reyes G, Díaz-Flores M, Vilar-Rojas C (2010) Protein antioxidant response to the stress and relationship between molecular structure and antioxidant function. PLoS ONE 5:1–10

    Article  Google Scholar 

  24. Moreno SN, Stolze K, Janzen EG, Mason RP (1998) Oxidation of cyanide to the cyanyl radical by peroxidase/H2O2 systems as determined by spin trapping. Arch Biochem Biophys 265:267–271

    Article  Google Scholar 

  25. Halliwell B, Gutteridge JM (1999) Antioxidant defenses. Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York, pp 105–245

    Google Scholar 

  26. Kalyanaraman B, Janzen EG, Mason RP (1985) Spin trapping of the azidyl radical in azide/catalase/H2O2 and various azide/peroxidase/H2O2 peroxidizing systems. J Biol Chem 260:4003–4006

    CAS  PubMed  Google Scholar 

  27. Chapple I, Mason GI, Garner I, Matthews JB, Thorpe GH, Maxwell SR, Whitehead TP (1997) Enhanced chemiluminescent assay for measuring the total antioxidant capacity of serum, saliva and crevicular fluid. Ann Clin Biochem 34:412–421

    Article  CAS  PubMed  Google Scholar 

  28. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  29. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Peterman BF, Laidler KJ (1980) Study of reactivity of tryptophan residues in serum albumins and lysozyme by N-bromosuccinamide fluorescence quenching. Arch Biochem Biophys 199:158–164

    Article  CAS  PubMed  Google Scholar 

  31. Medina-Navarro R, Corona-Candelas I, Barajas-González S, Díaz-Flores M, Durán-Reyes G (2014) Albumin antioxidant response to stress in diabetic nephropathy progression. PLoS ONE 9:1–13

    Article  Google Scholar 

  32. Kawakami A, Kubota K, Yamada N, Tagami U, Takehana K, Sonaka I, Suzuki E, Hirayama K (2006) Identification and characterization of oxidized human serum albumin. FEBS J 273:3346–3357

    Article  CAS  PubMed  Google Scholar 

  33. Dockal M, Carter DC, Ruker F (1999) The three recombinant domains of human serum albumin. J Biol Chem 274:29303–29310

    Article  CAS  PubMed  Google Scholar 

  34. Curry S (2009) Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metab Pharm 24:342–357

    Article  CAS  Google Scholar 

  35. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446

    Article  CAS  PubMed  Google Scholar 

  36. Greenfield NJ (2006) Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nat Protoc 1:2891–2899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sattarahmady N, Moosavi-Movahedi AA, Habibi-Rezaei M, Ahmadian S, Saboury AA, Heli H, Sheibani N (2008) Detergency effect of nanofibrillar amyloid formation on glycation of human serum albumin. Carbohydr Res 343:2229–2234

    Article  CAS  PubMed  Google Scholar 

  38. Kisugi RT, Kouzuma T, Yamamoto S, Akizuki H, Miyamoto Y, Someya J, Yokoyama I, Abe N, Hirai A, Ohnishi A (2007) Structural and glycation site changes of albumin in diabetic patient with very high glycated albumin. Clin Chim Acta 382:59–64

    Article  CAS  PubMed  Google Scholar 

  39. Nagaoka S, Cowger ML (1978) Interaction of bilirubin with lipids studied by fluorescence quenching method. J Biol Chem 253:2005–2011

    CAS  PubMed  Google Scholar 

  40. Guerin-Dubourg A, Catan AA, Bourdon E, Rondeau P (2012) Structural modifications of human albumin in diabetes. Diabetes Metab 38:171–178

    Article  CAS  PubMed  Google Scholar 

  41. Zoellner H, Hou JY, Hochgrebe T, Poljak A, Duncan MW, Golding J, Henderson T, Lynch G (2001) Fluorometric and mass spectrometric analysis of nonenzymatic glycosylated albumin. Biochem Biophys Res Commun 248:83–89

    Article  Google Scholar 

  42. Zoellner H, Siddiqui S, Kelly E, Medbury H (2009) The anti-apoptotic activity of albumin for endothelium is inhibited by advanced glycation end products restricting intramolecular movement. Cell Mol Biol Lett 14:575–586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fondo de Investigación en Salud FIS/IMSS/PROT/G10/854 and FIS/IMSS/PROT/896/Consejo Nacional de Ciencia y Tecnología (CONACYT) SALUD-2010-01-141937.

Conflict of Interest

The authors have no conflicts of interest associated with the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Medina-Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosas-Díaz, M., Camarillo-Cadena, M., Hernández-Arana, A. et al. Antioxidant capacity and structural changes of human serum albumin from patients in advanced stages of diabetic nephropathy and the effect of the dialysis. Mol Cell Biochem 404, 193–201 (2015). https://doi.org/10.1007/s11010-015-2378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2378-2

Keywords