Abstract
The abundance and flux of acantharian cysts were recorded for a period of 12 months from December 2012 to 2013 in a sediment trap deployed at 1500 m in the north-eastern Scotia Sea, Southern Ocean. Acantharia (radiolarian protists) are found globally, have very dense celestite skeletons, and form cysts which can sink rapidly through the water column. However, they are highly soluble in seawater and have rarely been found to contribute significantly to fluxes of particulate organic carbon (POC) in mesopelagic or bathypelagic zones. We measured fluxes of acantharian cysts of up to 2706 ind. m−2 day−1, which we estimate to drive a POC flux of 5.1 mg C m−2 day−1. These acantharian cyst fluxes are unprecedented in the literature, and accounted for 17% of the annual POC flux at this site (0.5–26.0%). The high fluxes of acantharian cysts (and associated high POC fluxes) measured highlight the pressing need for further research into the life cycles of Acantharia to understand what drives the mass flux of their cysts, and to determine the contribution of Acantharia to the biological carbon pump.





References
Antia AN, Bauerfeind E, Bodungen BV, Zeller U (1993) Abundance, encystment and sedimentation of Acantharia during autumn 1990 in the East Greenland Sea. J Plankton Res 15:99–114. https://doi.org/10.1093/plankt/15.1.99
Beers JR, Steward GL (1970) The preservation of acantharians in fixed plankton samples. Limnol Oceanogr 15:825–827. https://doi.org/10.4319/lo.1970.15.5.0825
Belcher A, Iversen MH, Manno C, Henson SA, Tarling GA, Sanders R (2016) The role of particle associated microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica. Limnol Oceanogr 61:1049–1064. https://doi.org/10.1002/lno.10269
Belcher A, Manno C, Ward P, Henson SA, Sanders R, Tarling GA (2017) Copepod faecal pellet transfer through the meso- and bathypelagic layers in the Southern Ocean in spring. Biogeosciences 14:1–15. https://doi.org/10.5194/bg-14-1-2017
Bernstein RE, Betzer PR (1991) Labile phases and the ocean’s strontium cycle: a method of sediment trap sampling for acantharians. In: Hurd DC, Spencer DW (eds) Marine particles: analysis and characterization. American Geophysical Union, Washington DC, pp 369–374
Bernstein RE, Betzer PR, Feely RA, Byrne RH, Lamb MF, Michaels AF (1987) Acantharian fluxes and strontium to chlorinity ratios in the North Pacific Ocean. Science 237(4821):1490–1494. https://doi.org/10.1126/science.237.4821.1490
Bernstein RE, Byrne RH, Betzer PR, Greco AM (1992) Morphologies and transformations of celestite in seawater: the role of acantharians in strontium and barium geochemistry. Geochim Cosmochim Acta 56:3273–3279. https://doi.org/10.1016/0016-7037(92)90304-2
Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, Gorsky G, Guidi L, Kiko R, Not F (2016) In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532:504–507. https://doi.org/10.1038/nature17652
Bochdansky AB, Clouse MA, Hansell DA (2017) Mesoscale and high-frequency variability of macroscopic particles (> 100 μm) in the Ross Sea and its relevance for late-season particulate carbon export. J Mar Syst 166:120–131. https://doi.org/10.1016/j.jmarsys.2016.08.010
Boehme L, Meredith MP, Thorpe SE, Biuw M, Fedak M (2008) Antarctic circumpolar current frontal system in the South Atlantic: monitoring using merged argo and animal-borne sensor data. J Geophys Res 113:C09012. https://doi.org/10.1029/2007JC004647
Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, Rutgers van der Loeff M, Sarin M, Steinberg DK, Trull T (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416. https://doi.org/10.1357/002224007781567621
Caron DA, Swanberg NR (1990) The ecology of planktonic sarcodines. Rev Aquat Sci 3:147–180
de Villiers S (1999) Seawater Sr and Sr/Ca variability in the Atlantic and Pacific oceans. Earth Planet Sci Lett 171:623–634. https://doi.org/10.1016/S0012-821X(99)00174-0
Decelle J, Not F (2015) Acantharia. In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0002102.pub2
Decelle J, Martin P, Paborstava K, Pond DW, Tarling G, Mahé F, de Vargas C, Lampitt RS, Not F (2013) Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS One. https://doi.org/10.1371/journal.pone.0053598
González HE, Daneri G, Iriarte JL, Yannicelli B, Menschel E, Barría C, Pantoja S, Lizárraga L (2009) Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: the significance of euphausiids and diatoms as key functional groups for the biological pump. Prog Oceanogr 83:217–227. https://doi.org/10.1016/j.pocean.2009.07.036
Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J, Coelho LP, Espinoza JCI, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S, Coordinators TO, Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas SG, Bork P, de Vargas C, Iudicone D, Sullivan MB, Raes J, Karsenti E, Bowler C, Gorsky G (2016) Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–470. https://doi.org/10.1038/nature16942
Hilton J, Lishman JP, Mackness S, Heaney SI (1986) An automated method for the analysis of “particulate” carbon and nitrogen in natural waters. Hydrobiologia 141:269–271. https://doi.org/10.1007/BF00014221
Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217–285. https://doi.org/10.1016/j.pocean.2007.11.003
Iversen MH, Ploug H (2013) Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10:4073–4085. https://doi.org/10.5194/bg-10-4073-2013
Korb RE, Whitehouse MJ, Gordon M, Ward P, Poulton AJ (2010) Summer microplankton community structure across the Scotia Sea: implications for biological carbon export. Biogeosciences 7:343–356. https://doi.org/10.5194/bg-7-343-2010
Korb RE, Whitehouse MJ, Ward P, Gordon M, Venables HJ, Poulton AJ (2012) Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: implications for the export of biogenic carbon. Deep Sea Res Part II Top Stud Oceanogr 59–60:67–77. https://doi.org/10.1016/j.dsr2.2011.06.006
Kwon EY, Primeau F, Sarmiento JL (2009) The impact of remineralization depth on the air–sea carbon balance. Nat Geosci 2:630–635. https://doi.org/10.1038/ngeo612
Lampitt RS, Salter I, Johns D (2009) Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycles. https://doi.org/10.1029/2008GB003221
Manno C, Stowasser G, Enderlein P, Fielding S, Tarling GA (2015) The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12:1955–1965. https://doi.org/10.5194/bg-12-1955-2015
Martin P, Allen JT, Cooper MJ, Johns DG, Lampitt RS, Sanders R, Teagle DAH (2010) Sedimentation of acantharian cysts in the Iceland Basin: strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnol Oceanogr 55:604–614
Meredith MP, Murphy EJ, Hawker EJ, King JC, Wallace MI (2008) On the interannual variability of ocean temperatures around South Georgia, Southern Ocean: forcing by El Niño/Southern Oscillation and the Southern Annular Mode. Deep Res Part II Top Stud Oceanogr 55:2007–2022. https://doi.org/10.1016/j.dsr2.2008.05.020
Michaels AF (1988) Vertical distribution and abundance of Acantharia and their symbionts. Mar Biol 97:559–569. https://doi.org/10.1007/BF00391052
Michaels AF (1991) Acantharian abundance and symbiont productivity at the VERTEX seasonal station. J Plankton Res 13:399–418. https://doi.org/10.1093/plankt/13.2.399
Michaels AF, Caron DA, Swanberg NR, Howse FA, Michaels CM (1995) Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux. J Plankton Res 17:131–163. https://doi.org/10.1093/plankt/17.1.131
Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J Geophys Res Ocean 104:3059–3073. https://doi.org/10.1029/1998JC900032
Murphy EJ, Trathan PN, Watkins JL, Reid K, Meredith MP, Forcada J, Thorpe SE, Johnston NM, Rothery P (2007a) Climatically driven fluctuations in Southern Ocean ecosystems. Proc R Soc B Biol Sci 274:3057–3067. https://doi.org/10.1098/rspb.2007.1180
Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP, Thorpe SE, Johnston NM, Clarke A, Tarling GA, Collins MA, Forcada J, Shreeve RS, Atkinson A, Korb R, Whitehouse MJ, Ward P, Rodhouse PG, Enderlein P, Hirst AG, Martin AR, Hill SL, Staniland IJ, Pond DW, Briggs DR, Cunningham NJ, Fleming AH (2007b) Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc B Biol Sci 362:113–148. https://doi.org/10.1098/rstb.2006.1957
Orsi H, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap 42:641–673. https://doi.org/10.1016/0967-0637(95)00021-W
Park J, Oh I-S, Kim H-C, Yoo S (2010) Variability of SeaWiFs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep Sea Res Part I Oceanogr Res Pap 57:604–620. https://doi.org/10.1016/j.dsr.2010.01.004
Rembauville M, Blain S, Armand L, Quéguiner B, Salter I (2015) Export fluxes in a naturally iron-fertilized area of the Southern Ocean—part 2: importance of diatom resting spores and faecal pellets for export. Biogeosciences 12:3171–3195. https://doi.org/10.5194/bg-12-3171-2015
Rembauville M, Manno C, Tarling GA, Blain S, Salter I (2016) Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia. Deep Res Part I 115:22–35. https://doi.org/10.1016/j.dsr.2016.05.002
Roca-Marti M, Puigcorbé V, Iversen MH, Rutgers van der Loeff M, Klaas C, Cheah W, Bracher A, Masqué P (2017) High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr 138:102–115. https://doi.org/10.1016/j.dsr2.2015.12.007
Rushdi AI, McManus J, Collier RW (2000) Marine barite and celestite saturation in seawater. Mar Chem 69:19–31. https://doi.org/10.1016/S0304-4203(99)00089-4
Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60. https://doi.org/10.1038/nature10605
Smayda TJ (1970) The suspension and sinking of phytoplankton in the sea. Oceanogr Mar Biol Annu Rev 8:353–414
Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth sounding. Science 277(5334):1956–1962
Spindler M, Beyer K (1990) Distribution, abundance and diversity of Antarctic acantharian cysts. Mar Micropaleontol 15:209–218. https://doi.org/10.1016/0377-8398(90)90011-A
Steinberg DK, Lomas MW, Cope JS (2012) Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Glob Biogeochem Cycles 26:1–16. https://doi.org/10.1029/2010GB004026
Thorpe SE, Heywood KJ, Brandon MA, Stevens DP (2002) Variability of the southern Antarctic Circumpolar Current front north of South Georgia. J Mar Syst 37:87–105. https://doi.org/10.1016/S0924-7963(02)00197-5
Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr 130:205–248. https://doi.org/10.1016/j.pocean.2014.08.005
Volk T, Hoffert MI (1985) Ocean Carbon Pumps: analysis of relative strengths and efficiencies in ocean driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: Natural variations Archean to Present. American Geophysical Union, Washington, DC, pp 99–110
Waite A, Fisher A, Thompson PA, Harrison PJ (1997) Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar Ecol Ser 157:97–108. https://doi.org/10.3354/meps157097
Ward P, Atkinson A, Venables HJ, Tarling GA, Whitehouse MJ, Fielding S, Collins MA, Korb R, Black A, Stowasser G, Schmidt K, Thorpe SE, Enderlein P (2012) Food web structure and bioregions in the Scotia Sea: a seasonal synthesis. Deep Sea Res Part II Top Stud Oceanogr 59–60:253–266. https://doi.org/10.1016/j.dsr2.2011.08.005
Acknowledgements
We would like to thank the crew, officers and scientists aboard the R.R.S. James Clark Ross during research cruises JR280 and JR291. Special thanks to Peter Enderlein, Gabrielle Stowasser and Sophie Fielding for their help in deployment and recovery of the sediment trap. In particular, we would like to thank Meltem Ok for her dedicated work supporting sediment trap sample analysis. In addition, we thank Paul Geissler for carrying out CHN analysis. We thank the reviewers and journal editor for their constructive comments on our manuscript. The work undertaken was supported by the Ocean Ecosystems programme at British Antarctic Survey. The chlorophyll a and sea surface temperature data were provided by NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group (2014): Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; 2014 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. https://doi.org/10.5067/aqua/modis/l3m/chl/2014. Accessed on 09/10/2014.
Funding
This study was supported by the Ocean Ecosystems programme at British Antarctic Survey.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with animals performed by any of the authors.
Additional information
Responsible Editor: A. Atkinson.
Reviewed by J. Decelle and an undisclosed expert.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Belcher, A., Manno, C., Thorpe, S. et al. Acantharian cysts: high flux occurrence in the bathypelagic zone of the Scotia Sea, Southern Ocean. Mar Biol 165, 117 (2018). https://doi.org/10.1007/s00227-018-3376-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00227-018-3376-1