Sari la conținut

Subtangentă

De la Wikipedia, enciclopedia liberă
Versiunea pentru tipărire nu mai este suportată și poate avea erori de randare. Vă rugăm să vă actualizați bookmarkurile browserului și să folosiți funcția implicită de tipărire a browserului.
Subtangenta și noțiuni înrudite pentru o curbă (cu negru) într-un punct dat P. Tangentele și normalele sunt afișate în verde și respectiv albastru. Distanțele afișate sunt ordonata (AP), tangenta (TP), subtangenta (TA), normala (PN) și subnormala (AN). Unghiul φ este unghiul de înclinare al dreptei tangente sau unghiul tangențial.

În geometrie subtangenta[1] și termenii înrudiți sunt anumite segmente de dreaptă definite folosind tangenta la o curbă într-un punct dat și axele de coordonate. Astăzi termenii sunt oarecum arhaisme, dar au fost folosiți curent până la începutul secolului al XX-lea.

Definiții

Fie P = (xy) un punct pe o curbă dată și A = (x , 0) proiecția sa pe axa Ox. Se desenează tangenta la curbă în P și fie T punctul în care această dreaptă intersectează axa Ox. Atunci segmentul TA este definit ca fiind subtangenta în P[1]. Similar, dacă normala la curbă în P intersectează axa Ox în N, atunci AN se numește subnormala în P.[2] În acest context, lungimile PT și PN se numesc tangenta și normala, dar a nu se confunda cu dreptele tangentă și normală în P.

Ecuații

Fie φ unghiul de înclinare al tangentei în raport cu axa Ox; acesta este cunoscut și sub numele de unghi tangențial. Atunci

Ca urmare, subtangenta este

iar subnormala este

Normala este dată de

iar tangenta de

Definiții polare

Subtangenta polară și noțiuni înrudite într-un punct dat P de pe o curbă (cu negru). Dreptele tangente și normale sunt afișate în verde, respectiv albastru. Distanțele afișate sunt raza (OP), subtangenta polară (OT) și subnormala polară (ON) . Unghiul θ este unghiul radial, iar ψ este unghiul de înclinare a tangentei la rază, adică unghiul tangențial polar.

Fie P = (rθ) un punct pe o curbă dată definit în coordonate polare și fie O originea. Se desenează o dreaptă prin O care este perpendiculară pe OP și fie T punctul în care această dreaptă intersectează tangenta la curbă în P. Similar, fie N punctul în care normala curbei intersectează dreapta. Atunci OT și ON sunt subtangentă polară, respectiv subnormala polară a curbei în P.

Ecuații polare

Fie ψ unghiul dintre tangentă și raza OP; acesta este cunoscut și sub denumirea de unghi tangențial polar. Atunci

Astfel că subtangenta polară este

iar subnormala polară este

Note

Bibliografie

  • en J. Edwards (). Differential Calculus. London: MacMillan and Co. pp. 150, 154. 
  • en B. Williamson "Subtangent and Subnormal" and "Polar Subtangent and Polar Subnormal" in An elementary treatise on the differential calculus (1899) p 215, 223 Internet Archive