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Division and the Digital Language Divide:

A Critical Perspective on Natural Language

Processing Resources for the South and

North Korean Languages

Benoit Berthelier

The digital world is marked by large asymmetries in the volume of content available

between different languages. As a direct corollary, this inequality also exists,

amplified, in the number of resources (labeled and unlabeled datasets, pretrained

models, academic research) available for the computational analysis of these

languages or what is generally called natural language processing (NLP). NLP

literature divides languages between high- and low-resource languages. Thanks to

early private and public investment in the field, the Korean language is generally

considered to be a high-resource language. Yet, the good fortunes of Korean in the

age of machine learning obscure the divided state of the language, as recensions of

available resources and research solely focus on the standard language of South

Korea, thus making it the sole representant of an otherwise diverse linguistic family

that includes the Northern standard language as well as regional and diasporic

dialects. This paper shows that the resources developed for the South Korean

language do not necessarily transfer to the North Korean language. However, it also

argues that this does not make North Korean a low-resource language. On one hand,
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South Korean resources can be augmented with North Korean data to achieve better

performance. On the other, North Korean has more resources than commonly

assumed. Retracing the long history of NLP research in North Korea, the paper shows

that a large number of datasets and research exists for the North Korean language

even if they are not easily available. The paper concludes by exploring the possibility

of “unified” language models and underscoring the need for active NLP research

collaboration across the Korean peninsula.

Keywords: large language models, artificial intelligence, natural language

processing, North Korea, ideology

Introduction

In 1997, a whitepaper published by the South Korean Ministry of Culture
and entitled National Competitiveness and the Digitization of the Korean language

noted, with a sense of urgency, that “developed countries like America,
Japan and, Europe have been steadily investing in the development of
natural language processing technologies since the dawn of the computer
age.”1 The computers of the future, surely, would understand English but
would they understand Korean? The picture was dire: “It is not even that
there is a dearth of valuable Korean language data on the Internet, there
simply isn’t any.”Without any data to develop natural language processing
(NLP) systems for its own language, South Korea would end up a digital
and linguistic colony, “degraded to a nation that consumes NLP systems
made in Japan or America.”2 To counter this trend, the Ministry of Culture
launched a plan, the Sejong Plan for the 21st Century, that would invest in
Korean-specific NLP resources such as digital dictionaries, corpora, and
software.3

Twenty-five years later, these fears are largely assuaged. Korean stands
on the safer side of the “digital language divide”—the inequal level of
digital resources available for different languages.4 While Chinese and
English content accounts for 40% of the web, Korean nonetheless
represents 1% of all online content.5 The language also belongs to a small
category of about a dozen “high-resource” languages—that is, languages
endowed with a large number of NLP resources.6A recent survey on digital
linguistic diversity classified Korean as belonging to a group of up-and-
coming languages that possessed “dedicated NLP communities” and had
“the potential to become winners and enjoy the fruits of ‘digital
superiority’.”7 While the South Korean government cannot be solely
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credited with the reasons for this success, the Sejong Plan did produce
some of the largest and most commonly used Korean language corpora,
upon which a number of NLP software were developed in the aughts.8

Other initiatives by universities and public institutions led to the release of
freely available corpora such as the KAIST corpora or the National
Information Society Agency’s AI HUB.9 More recently, the AI-research
branches of private companies (Kakao Brain, Naver AI Lab, SKT Brain,
etc.) have become increasingly important players, in particular in the
production of large language models (LLMs) for the Korean language.10

However, categorizing Korean as a high-resource language does not
take into account the diversity and divisions that exist within the language.
Like all other official national idioms, Korean has a number of variants tied
to context, class, and geography (both within and outside of the peninsula).
But the English term “Korean” used without any further qualifiers
conceals the more specific pluricentric11 nature of the language: the
existence of two separate underlying national languages, the Southern
standard language (p’yojun�o) and the Northern standard language (munhwa�o).
Between the two, publicly available research and resources are virtually
exclusively dedicated to the former.

But is such a distinction meaningful when gauging the availability of
NLP resources? After all, both South and North Korean languages share a
common origin, deriving from earlier efforts—in the colonial period—to
formalize a modern, standardized national language based on the Seoul
dialect and under the influence of Japanese linguistics.12 But, as the first
part of this paper demonstrates, while NLP models trained on South
Korean data can be used on North Korean texts, they can be expected to
perform significantly worse than models trained on North Korean data
specifically. This is due not only to morphological and syntactic differences.
As I argue in the first part of the paper after demonstrating the extent of
the semantic gap between contemporary South and North Korean
language using a technique known as word embeddings, there are
significant differences in meaning between the same words in the two
languages, which can be attributed to the ideological and cultural gap
between the two countries.

If these observations emphasize the need to rely on North Korean
language data for NLP, it does not necessarily imply that North Korean is a
low-resource language. Indeed, South Korean resources can still be used as
a basis for the development of North Korean-specific NLP models, thus
limiting the amount of data necessary to develop them. Furthermore, I
argue that the development of LLMs with the ability to encode polysemy
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into contextual representations13 opens the possibility of producing
unified language models trained on equally large amounts of South and
North Korean data. I offer a benchmark of language models trained using
different strategies on North and South Korean data to show the large
performance increase that can be obtained on NLP tasks by combining
resources developed for the South Korean language with North Korean
language-specific datasets.

Compiling sufficient digitized North Korean textual data for such
tasks may seem difficult in light of North Korea’s relatively small presence
in the global digital world. But, as the final part of this paper asserts, the
North Korean language is in fact quite resource-rich—its resources merely
suffer from a problem of accessibility. Measures of a language’s NLP
resources typically look at textual content availability on the Internet,
publicly available datasets, and academic research. As internet access is
extremely limited in the Democratic People’s Republic of Korea (DPRK)
and locally produced research is hardly ever consultable overseas, North
Korea would clearly appear as a low-resource language. Yet looking at the
history of digitization and the development of NLP and machine learning
research in the country since the 1980s shows that the North Korean
language is far less destitute than commonly assumed. The problem is
therefore not about the production of resources but about the ability to
access and share them.

Morphosyntactic and Lexical Differences and Their (Minor)

Implications

North and South Korea have been divided since 1945 and over time a
notable number of linguistic differences have emerged between the
languages spoken on each side of the 38th parallel today. These differences
have been attributed to a number of factors, from diverging language
policies14 and ideological causes15 to lifestyle differences16 and preexisting
geolectal variations.17 There exists, particularly in South Korea, a very large
body of scholarship dedicated to cataloging and monitoring the diverging
evolution of the two languages.18While a few authors contend that the two
languages have diverged a great deal,19 most agree that differences are
limited to vocabulary and that contemporary North and South Korean
speakers still have no difficulty understanding each other.20 This section
maps out these differences and explores their implication for natural
language processing systems. To investigate lexical differences, I compiled
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and compared lexical corpora of each language. For the North, I extracted
the index of the reference dictionary in North Korea, the Great Dictionary of
Korean Language from a digital application as well as entries from the Korean
Dictionary of Word Frequencies.21 For the South, I used a list of the most
frequent words in the South Korean language compiled by the National
Institute of Korean Language (NIKL) and the institute’s Dictionary of

Standard Korean.22

Even if North and South Korean are mutually intelligible for human
speakers, differences that may be trivial to resolve for them can prove
difficult to handle for a computer algorithm. Indeed, it is an often-
observed phenomenon that the performance of NLP systems degrades
when applied to language variations (of the type observed between
pluricentric languages, but also even diachronic variations of the same
language).23 For instance, while minor changes such as the addition or
omission of a silent letter in a word’s spelling may not even be noticed by a
human speaker, it may be enough for a dictionary-based algorithm to
consider the alternative spelling as a completely unknown term. Therefore,
while cataloging all the differences between the two languages is outside
the scope of the present paper (not to mention already well-trodden
ground), it is nonetheless important to single out which of these
differences can affect the performance of NLP systems and how. Note
that, as the focus of the study will be on textual inputs, phonetic and
phonologic differences will be disregarded.

There are few grammatical differences between North and South and,
as a result, common NLP tools such as morphosyntactic taggers and
dependency parsers24 trained on one language may still be used on the
other. Most grammatical differences really are differences in the usage of a
form rather than in the existence of language-specific forms: a certain
clause structure or modifier will be used more commonly in the North than
the South but nonetheless exist in both.25 For instance, the form ~�ul te ~
(으)ㄹ데 is common in the North where in the South -n�un k�ot ~는것 would
be used. In certain cases, the difference may actually be interpreted as
semantic: the widespread use of the deferential style in conversation in the
North where the polite style would be common in the South indicates that
the meaning of each style has come to differ.

More serious (perhaps somewhat counterintuitively), are differences in
spacing (tt�ui�oss�ugi), with North Korean orthographic rules and practice
resulting in lengthy compound words being commonplace. While mainly a
matter of comfort for a human reader, the different ways in which words
are separated within a text has tremendous influence on an NLP system’s
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performance. The first step of any NLP pipeline is tokenization—the
breaking down of the text into smaller semantic units which will constitute
the vocabulary of terms the system uses.26 Tokenization often relies on
space: either because it uses the space in the text to separate words or
because it relies on machine learning models such as hidden Markov
models or conditional random fields that were trained on text spaced in a
certain way to separate words regardless of how they were originally
segmented in the text. In the latter case, a tokenizer trained on Southern
data would simply reproduce the more granular spacing used in the South
when processing a Northern text. This may still be practical for certain
tasks such as building a classifier or an index for a search engine. However,
because differences in spacing also stem from differences between how
North and South Korean grammarians define syntactic units, one must be
aware that the results obtained from tools such as part-of-speech taggers
and parsers will reflect a Southern theory of Korean grammar.27 For a
number of NLP systems, from language models to classifiers, it is,
however, possible to bypass the issue of spacing altogether. Over the past
few years character or morpheme-based tokenizers such as WordPiece,28

which do not rely on word boundaries, have proven extremely effective to
handle spacing and even spelling differences between language variations.

Divergences in lexicon are widely acknowledged to be the most
differentiating factor between North and South, but the breadth and
relevance of that gap may be overstated, both for human speakers and NLP
systems. Globalization in the South has led to the introduction of a large
number of English-based loanwords while in the North language policies
to “purify” the language of foreign loanwords and Sino-Korean words
have resulted in the creation of neologisms based on pure Korean words.29

While loanwords account for less than 3% of the North Korean lexicon,
they make up 5 to 10% of the South Korean one.30 The two languages also
employ different spelling rules, for instance for certain initial consonants of
Sino-Korean words (initial ㄴ and ㄹ are replaced byㅇ in the South) and
certain final consonants in compound words.

To evaluate the scope of these lexical differences, we can look at a list
of the most common words in one language and see if these exist in a
general-purpose dictionary of the other. For instance, naïvely attempting to
match the most common South Korean words to an entry in the North
Korean dictionary yields a match for less than half of the words. While this
result may seem dramatic, looking at the orphan words in more detail
reveals much fewer differences. The aforementioned difference in spelling
rules (for initial and final consonants) is responsible for 3% of the missing
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cases, and can easily be addressed, in NLP systems, with a dictionary or a
heuristic conversion algorithm; 17% are foreign loanwords, one third of
which are mismatched due to spelling differences (t’ellebij�on vs. t’ellebijyon for
“television,” p’�osent’iji vs. p’osent’eji for “percentage”) that can likewise be
addressed with an additional dictionary or morpheme-based tokenization.
The remainder consists of compound Sino-Korean words that for the
most part do also exist in North Korea (e.g., sinsedae for “new era,”
pangsongsa “broadcasting company”) but are not in the dictionary due to its
indexing methodology. The opposite operation of trying to match
common North Korea words with entries in a South Korean dictionary
does not yield as many orphan words (less than 20% of the words do not
have a match in the South Korean dictionary).31 And spelling differences
(k�op’usi hada vs. k�op’ususu hada, chingg�ul s�ur�opta vs. chingk�ur�opta) again account
for a large number of cases. Both languages thus remain morphologically
similar with only minor and easily addressable differences.

Semantic Drift Between North and South

If contrasting grammars and lexica only reveals relatively trivial differences,
the comparison does not account for semantic divergences between the
two languages. This difference in meaning can manifest itself in two ways: a
difference in what words mean, but also a difference in what the languages
are used to talk about. Both have implications for the transferability of
NLP resources from one language to the other, particularly for what has
now become the “standard way to represent word meaning in NLP”: word
embeddings.32 Word embeddings are abstract, numerical representations
of the meaning of words learned from their distributions in a large corpus.
Embeddings can be static, representing the meaning of word types (the
dictionary definition(s) of a word), or contextual, representing the meaning
of word tokens (the meaning of a word in a particular context).33 Since in
both cases meaning is derived from the training corpora, cultural and
ideological differences between North and South can have a larger impact
than linguistic differences on the performance of NLP models.

To illustrate and quantify semantic drift between the South and North
Korean language, I start by using two sets of word embeddings trained on
large corpora of texts from each language.34 Word embeddings are sets of
coordinates in a vector space and it is possible to measure the semantic
similarity between two words by measuring the distance between their
coordinates.35 Likewise, we can list the synonyms of a word in order of
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similarity by finding its n closest neighbors (n being the number of
synonyms in the list). Because embeddings for each language are in a
different vector space, the coordinates of a word in one set of embeddings
cannot be directly compared with its set of coordinates in the other without
further mathematical adjustments. However, one may use, for each word,
the number of common synonyms among the word’s n closest neighbors in
each set of embeddings.36 Boggust, Carter, and Satyanarayan thus
introduce a method relying on the Jaccard similarity measure (intersection
over union, i.e., the number of common synonyms over the total number
of synonyms, or, in our case, the number of synonyms the same word has
in both the South and North Korean embedding sets divided by the sum of
the number of synonyms in each set), which I will reuse here.37 Taking the
intersection of both sets of embeddings and n = 100, I assign to each word
a similarity score between 0 (low semantic similarity between North and
South) and 100 (perfect semantic overlap).

Ordering the resulting lexicon by similarity lets us see what has
remained semantically stable despite division. We find that musical words
(paiollin “violin,” p’iano “piano,” kayag�um “Korean zither”), toponyms
(ky�ongsang-bukto “North Ky�ongsang province,” ky�ongju-si “Ky�ongju city”),
colors (saek “color,” h�uinsaek “white,” p’ur�un saek “blue/green”), kinship
terms (ttal “daughter,” �om�oni “mother,” samch’on “uncle”), and penal
vocabulary (ch’ep’o “arrest,” s�on’go “sentence,” sahy�ong “death penalty”)
retain the largest amount of semantic similarity across the 38th parallel.
These results are unsurprising: for instance, musical words are all likely to
co-occur with the same words in both languages. More informative would
be to rank the most dissimilar words but, as a very large amount of words
do not share any synonyms, the results are less easily interpretable. What is
possible, however, is to plot the distribution of similarity scores as in
Figure 1 to get an overview of the overall degree of difference between the
two languages.

The distribution of similarity scores is strongly skewed to the left
indicating that most words in the corpus have low semantic similarity and
that embeddings trained on a South Korean corpus will, for over 75% of
the words learn a representation that is different from the representation
that can be extracted from a North Korean corpus. It is worth noting,
however, that we are talking here about semantic similarity as used by NLP
algorithms. While it may offer a proxy for semantic differences experienced
by a human speaker, it is not the same thing (i.e., the results do not mean
that 75% of the vocable is not mutually intelligible to human speakers). To
better gauge how one might interpret this distribution, we can compare it
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to a similar graph comparing a different form of variation. Figure 2 shows
the result of the application of the same methodology to diachronic
variations of English, with one set of embeddings trained on English
language textual data from 1800 to 1810 and the other on data from 1990
to 2000.38 While both figures exhibit an overall similar distribution, the
distribution of Figure 1 is nonetheless more strongly skewed to the left,
suggesting that the semantic difference between North and South Korean
today are akin, yet slightly more marked, than the differences in the English
language at two centuries of distance.

To better grasp what the semantic differences across the corpus might
look like, we would need to be able to compare the South Korean and
North Korean vectors of the same word. We cannot naively compare these
as the embeddings are in different vector spaces, but several methods exist
to learn a linear transformation from one set of embeddings to another
given a set of common reference points.39 This, in turn, allows one to
project a word from one set of embedding into another and see what words
it is similar to in this other space. For instance, in our case, we could take

Fig. 1. Distribution of lexical similarity scores between North and South Korean, for each

word in both sets of embeddings. Words with a high Jaccard similarity score retain the same

meaning in both corpora, words with a low score have drifted semantically; 75.5% of the

words in the corpus have a score between 0 and 5, indicating a high semantic drift. Only

0.1% of the words have a score above 20.
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the coordinates representing a word in the North Korean embedding set,
project them into the South Korean embedding’s vector space and see what
words the coordinates are the closest to (the reverse operation is likewise
possible). More succinctly, this can be thought of as expressing the North
Korean meaning of a word with a Southern vocabulary. We can then, using
a dimension reduction technique, offer a simple 2D visualization of where
a word stands in the other language’s vector space. The following figures do
exactly that for the word “socialism” (sahoeju�ui) after using the standard
orthogonal Procrustes technique to align vector spaces.40 Figure 3
represents the projection of the South Korean word vector for “socialism”

and the North Korean word vector for “socialism,” along with their
respective nearest neighboring words, in the North Korean vector space.
Figure 4 does the opposite, projecting the North Korean word in the South
Korean vector space.

In Figure 3, we see that the term North Korean term “socialism” is
associated with a number of grandiloquent qualifiers, representative of the
way the ideology would be described in official discourse. But when what
the South Korean language means by “socialism” is translated into North
Korean terms, we find it associated with words such as “dictatorship,”

Fig. 2. Distribution of lexical similarity scores between early nineteenth century and late

twentieth century English; 68.8% of the words in the corpus display a high semantic drift.
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“absolutism,” or “Soviet.” The proximity to the term “multiparty system”

(tadangje) in the North Korean vector space does not mean that the South
Koreans associate the term with political pluralism. Much to the contrary, it
further emphasizes the negative connotation of “socialism” in the South,
since in North Korea, a one-party state, multiparty systems are a sign of
class division (and therefore a “multiparty system” would be semantically
close to “dictatorship” and “absolutism”). Conversely, in Figure 4, we see
that South Korean embeddings unsurprisingly associate “socialism” with
the left, and other ideologies such as “republicanism,”41 “communism,” or
“conservatism.” But the meaning of the North Korean term “socialism” is
close to concepts such as “equality,” “order,” “economy,” “globalization,”
and even “capitalism” (presumably in the general sense of an economic
system).

Fig. 3. Projection of the South Korean word vector for “socialism” (blue star) in a North

Korean vector space. The word is surrounded by its nearest neighbors in the North Korean

vector space, that is, words that are semantically close to it (or, more figuratively, words that

might be used by a North Korean speaker to describe the meaning of “socialism” in the

South). The North Korean word vector (red star) is also represented along with its nearest

neighbors.
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As one may object that the differences are marked because the term
chosen is a polarizing one, it is worth pointing out that the Jaccard
similarity score associated with the word puts it in the upper quartile of the
lexicon, indicating that it is one of the terms whose meaning is most similar
across the Northern and Southern embeddings, and, by proxy, in both
languages. Using the same method or word vector arithmetic’s ability to
capture more complex semantic relations such as analogies,42 it is easy to
highlight how differences in social practices, ideologies or, definitions of
gender can result in semantic divergences.43

This semantic drift between North and South affects embeddings but
also any downstream NLP application that would rely on them. To

Fig. 4. Projection of the North Korean word vector for “socialism” (red star) in a South

Korean vector space. The word is surrounded by its nearest neighbors in the South Korean

vector space, that is, words that are semantically close to it (or, more figuratively, words that

might be used by a South Korean speaker to describe the meaning of “socialism” in the

North). The South Korean word vector (blue star) is also represented along with its nearest

neighbors.
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illustrate this, I create two similar barebone classifiers with an initial
embedding layer, a few convolution layers and a softmax activation
function. I compile a dataset with approximately 2000 sentences selected in
equal proportion from three different North Korean sources.44 Each
sentence is associated with one of three categories depending on its source.
I then train two separate models to identify the category of a given
sentence, using each separate set of embeddings to encode the input
sentences. Unsurprisingly, the model using North Korean embeddings
performs significantly better (Table 1).

Building North Korean Language-Specific Models

The observations above show that while it is possible to use South Korean
NLP resources on North Korean texts, they also highlight the significant
benefits of using North Korean language-specific resources. Procuring
such resources, however, is far from trivial. The lack of available training
data—both annotated and unannotated—makes this a particularly
challenging task. In the examples previously given, I created North
Korean-specific embeddings to demonstrate a point, but the techniques
used were far from the current state-of-the-art. The training data used was
a corpus of 4.4 million sentences comprising 91 million tokens, which is,
to my knowledge, the largest of such corpora available outside of the
DPRK.45 Such a corpus is enough to train static embeddings, but
contextual embeddings which are used by more advanced models and
perform better, especially on complex tasks,46 require several orders of
magnitudes more data (from 3.3 billion token for an LLM like BERT, 175
billion for GPT-3, and over 1 trillion for the most recent LLMs like
Chinchilla or PaLM 2).47

For such situations where some, but still little, training data is available
in a variation of a language and large amounts of data are available for
another, transfer learning (training a machine learning model on one task

Table 1. Comparison of the Performance of Two Models Using the Same

Architecture but Different Embeddings on a Classification Taskwith North

Korean Textual Data

Embeddings Used Precision Recall F1-Score

North Korean 0.86 0.86 0.86

South Korean 0.77 0.76 0.77
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or domain and then applying the acquired knowledge to solve another new
task) can prove to be a useful approach. Indeed, transfer learning has been
successfully applied to other sets of language variations with asymmetrical
resources. For instance, contextual embeddings trained on a large amount
of data from a well-resourced language can be effectively fine-tuned with
only a minimal amount of data from a resource-poor variation.48 This
strategy has been leveraged to develop taggers and parsers for resource-
poor languages like African American Vernacular based on English data or
the minority language Rusyn using a compilation of resources from several
related Slavic languages with better resources.49

In the case of Korean, a base model trained on South Korean data
would still learn linguistic aspects of the language that are shared by both
Southern and Northern variations such as syntactic features, dependency
relations, and common semantic information.50 This South Korean base
model can then be trained again, or “fine-tuned” on a smaller dataset of
North Korean data and leverage its knowledge of South Korean to capture
the specificities of the Northern variation. The resulting model would
therefore perform better than a direct application of the base model to
North Korean data or a model trained solely on a small amount of North
Korean data. Table 2 offers an illustrative benchmark of the performance
of four different BERT-based classifiers: one trained solely on South
Korean data (SK base), one trained solely on North Korean data (NK

base), one trained on a mix of South and North Korean data (SK and NK

base), and one trained on South Korean data before being fine-tuned on
North Korean data (SK base with NK fine-tuning)51 on the same task of
North Korean text classification.

The results clearly show the problem that arises from the scarcity of
data characteristic of low-resource languages. The model trained from
scratch on North Korean data performs worse than chance, due to the
small size of the training data set. The model trained solely on South
Korean data is markedly better but is itself outperformed by the model

Table 2. Comparison of the Performance of the Same Language Model

(BERT) with Four Different Training Strategies

Training Strategy Precision Recall F1-Score

SK base 0.76 0.72 0.74

NK base 0.16 0.40 0.23

SK and NK base 0.82 0.81 0.82

SK base with NK fine-tuning 0.88 0.87 0.88
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trained on a mix of South and North Korean data and the fine-tuned
model. The fine-tuned model offers the best results overall.

The benchmark above uses unannotated data for fine-tuning, but the
transfer learning technique used to fine-tune the last model can also be
used with small, annotated datasets for tasks such as POS tagging,
dependency parsing or, machine translation.52 In the case of machine
translation specifically, in 2022, Kim et al. developed a neural machine
translation (NMT) model for North Korean to English and Japanese by
using transfer learning.53 They first trained an NMT model on a large
dataset of South Korean/English and South Korean/Japanese sentence
pairs and fine-tuned it on small (1000 sentences) sets of North Korean/
English and North Korean/Japanese sentence pairs. Unsurprisingly, the
resulting model performs better than the base South Korean model on
North Korean data than a model trained only on North Korean data.

Towards Unified Korean Models

The benchmarks for Kim et al.’s NMT paper also include a model trained
on a combination of North and South Korean data. That is, rather than a
first training pass on South Korean data followed by fine-tuning on North
Korean data, the model was trained directly on a mixed corpus like the SK
and NK base model above. The model does not perform better than the
South Korean model when tested against unseen South Korean data and
also underperforms the fine-tuned model on tests against North Korean
test data. However, it still performs relatively well overall (whereas the
South Korean model performs poorly on North Korean data and the fine-
tuned model fares worse on South Korean data).

While fine-tuning can give us better domain-specific models, models
that perform better on North Korean data only, training on mixed corpora
can give us unified, variation-agnostic models capable of handling both
North and South Korean data54 with performance levels close to those of
specific models. Developing such models, however, entails procuring
similarly large amounts of data for both languages. Indeed, the benchmarks
show that there is quite a difference in howmuch the mixed-corpora model
underperforms the specific model for each language variation. On South
Korean data, the degradation is only a few tenths of a percentage point
compared to a South Korean model, but on North Korean data the
degradation is on the order of several percentage points compared to a
fine-tuned model. This differential in the amount of degradation, in turn,
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can be explained by the unbalanced amount of training data for each
language variation. With small amounts of North Korean data, one may
still train a model for Korean, yet that model would be too unequal to be
considered unified.

It would seem then, that we are back to the original problem of scant
North Korean NLP resources. But what if North Korean’s status as a low-
resource language had more to do with the definitions of low-resource
languages than with the actual amount of existing NLP resources? There
are no commonly agreed-upon criteria and no official thresholds for what
constitutes a low-resource language.55 The designation is left at the
discretion of the researchers. This pragmatic approach is not necessarily
without merit: researchers typically know if their working language is a low-
resource one because they can easily assess the gap between it and the state
of the start in other well-resourced languages like English. Attempts to
more formally define or evaluate languages’ resources56 look at a fairly
consistent set of criteria such as the amount of unannotated data available
(usually equal to online data), number of annotated datasets, amount of
existing NLP systems, and amount of NLP research for the language.

Yet these approaches are ill-suited to the evaluation of a language like
North Korean. While a researcher outside North Korea might find the
number of available resources extremely limited, this may not be the
experience of a North Korean researcher. On the contrary, while NLP
papers published in the DPRK may emphasize the need to further
“develop” corpus resources, few consider their language to be under-
served.57 This difference cannot simply be dismissed as the product of
national pride or ignorance on the part of North Korean scholars. Scholars
based outside of the DPRK have limited access to, and often sometimes
even knowledge of the existence of, unannotated data since most of the
DPRK’s digitized textual content is kept on a local network inaccessible
from overseas. North Korean NLP research papers and monographs are
likewise also almost entirely unavailable online. While they can partially be
accessed via South Korean institutions, datasets and NLP systems remain
entirely unavailable outside of the DPRK.

That resources are not readily available, however, does not mean that
they do not exist, nor that they aren’t actively used by North Korean
researchers. The DPRK has a long tradition of NLP scholarship, with
research on machine translation beginning in the 1950s under the influence
of Soviet research,58 and the first efforts to develop large corpora for
computational linguistics starting in the late 1980s.59 While the country
may not have the resources of online user-created content, most of its
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intellectual production (novels, magazines, newspapers, etc.) since the
1950s has been digitized and made available on the country’s intranet. This
large amount of data is used by North Korean researchers who may create
thematic or historical subsets depending on their use case.60 What little
North Korean data is available in the South usually stems directly from the
North where the data was originally digitized.61

In addition to this raw, unannotated data, a look at published NLP
research from DPRK also reveals the existence of a number of annotated
corpora such as part-of-speech (POS) tagged corpora with over 1 million
tagged sentences, several dependency corpora, including one with 40,000
annotated sentences, multiple bilingual corpora for machine translation,
including a bilingual Chinese-North Korean corpus with 45,000 sentence
pairs.62 The corpora have been used to develop a number of NLP systems
such as tokenizers, named entity recognition taggers, POS taggers,
dependency parsers, automatic translators, and information retrieval
systems.63 The systems may not always be state-of-the-art and many use
heuristic rules rather than more performant machine learning-based
approaches, but, in combination with a large and diverse base of corpora
they constitute a solid base and attest to the commitment of North Korean
scholars and research institutions to the development of NLP.

More than low resources, the issue with North Korean NLP is one of
availability of resources, and communication and collaboration between
DPRK-based and non-DPRK-based scholars. Frommy interactions with a
few North Korean NLP scholars prior to the onset of the pandemic, there
is marked interest in collaboration and data-sharing from the DPRK.
Whether sanctions, public health restrictions, and political and logistic
hurdles will allow for the development of collaborative North-South
corpora and NLP systems remains to be seen.
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