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ABSTRACT

Soil moisture is vital to understanding many natural systems such as 
hydrology, climate and weather, erosion, and biology. Current remote 
sensing provides soil moisture data with a resolution on the scale of tens 
of kilometers, due to the current constraints of microwave antennae tech-
nology. In this study, we present a machine-learning technique based on 
rule transference that allows us to use a low-resolution but high-accuracy 
product, obtained through multiple proxies, to produce a high-resolution 
model of Earth’s soil moisture. The low-resolution, high-accuracy micro-
wave product is utilized as a dependent variable in rule-building only. This 
algorithm is simple, utilizes public data, and overcomes many local issues 
inherent in other techniques, such as topographic, biographic, temporal, 
and climatic variations. The final result demonstrates close parity with 
high-resolution airborne L-band radiometric data.
Keywords: Downscaling, soil moisture, random forests

Introduction
Soil moisture is a measure of the hydrological component within a finite 
amount of soil. The variability of soil moisture is highly dependent on the 
soil properties (Cosby et al. 1984), the local geologic conditions (Weizu and 
Freer 1995), vegetation density and draw (Denmead and Shaw 1962), and 
antecedent conditions. Soil moisture is also very important for understand-
ing the physical conditions of the Earth for many systems. Agriculture relies 
on soil moisture for plant vigor and growth, providing root-zone moisture 
and a direct relationship to CO

2
 respiration through soil microbial activity 

(Orchard and Cook 1983). The moisture itself acts as a primary nutrient 
for growing crop and plant life, carrying with it the organic and inorganic 
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trace nutrients necessary for plant growth. Weather and climate models are 
strongly coupled to land–atmosphere interactions (Koster et al. 2004). Flood 
control is highly dependent on antecedent soil moisture conditions (De 
Michele and Salvadori 2002). Slope failure and mass movement are linked 
to soil plasticity induced by elevated moisture content, creating hazards for 
local communities and travel (Crosta 1998). Soil moisture, in short, affects 
our communities in countless ways. In order to quantify the impact, we need 
to be able to measure soil moisture in a reliable manner. 

The Soil Moisture Active Passive (SMAP) mission, launched in 2015, at-
tempted to develop a higher-resolution product, one with a resolution better 
than 10 km. This was accomplished through the integration of the highly 
accurate but low-resolution passive radiometer with the higher-resolution 
active microwave, which is sensitive to vegetation and surface roughness 
effects (Wu et al. 2015). Unfortunately, SMAP suffered an irrecoverable 
system failure in the active microwave portion of the sensor, leading to the 
passive radiometer being the only usable sensor part of the instrument. 
SMAP has a very coarse pixel size that is problematic at the local scale, 
giving a functional received product with a thirty-six kilometer resolution. 
Although some algorithms linking the SMAP sensor to ground-condition 
soil moisture have been proposed, the resolution issue remains.

Downscaling this data to field scale is useful for local, actionable intel-
ligence on soil moisture, and can be accommodated by several methods. Peng 
et al. (2017) provide a comprehensive, in-depth review of these methods. 
We will briefly describe what governed our choice in downscaling in terms 
of the types of soil moisture downscaling methods lists. 

Our initial concern was the end user. Our focus is on the underserved 
communities that may not have resources to utilize advanced methods of 
downscaling to support their civil works and agricultural communities. 

Downscaling methodologies can fit broadly into three classes: satellite-
based methods, geoinformation methods, and model-based methods. 
Geoinformation methods tend to be highly localized and, while they have 
great potential for amending the other two downscaling types, cannot as of 
yet be relied on for downscaling soil moisture at regional scale. 

Among satellite-based fusion methods, Active-Passive fusion was the 
initial plan for SMAP, but given the failure of the active portion, it is not an 
option, although SMAP passive has been successfully fused with other ac-
tive systems. The optical/thermal and microwave fusion methods have the 
same general input as our model, relying on the vegetation properties and 
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surface temperature. However, these tend to be a polynomial fitting function 
and therefore are not as capable in applying multiple sub-routines over a 
region. Instead, we felt a model that is able to differentiate regime zones and 
establish models best suited to that zone was desirable. Over such a large 
region within a single Landsat scene, it seemed an algorithm that could in 
effect have multiple Soil-Vegetation-Atmosphere triangle (SVAT, discussed 
below) clusters instead of one could provide a more reliable response. 

Model-based methods are separated between land-surface integrated 
models and statistical models. We wanted to avoid land-surface models 
due to our envisioned end user. Furthermore, the statistical approach also 
increases in complexity, especially when considering the fractal nature 
of soil moisture. While we believe a statistical approach would be a fit in 
amending our method’s shortcomings in addressing increasing variability 
at larger scale, we will demonstrate our method is effective at obtaining soil 
moisture at field scale while being relatively simple.

Here, we propose a method, Rule Transference Algorithm (RTA), 
which improves the resolution of soil-moisture imagery products, using an 
inferred-learning soil-moisture algorithm. The intent is to provide a simple, 
repeatable methodology to downscale low-resolution soil-moisture data to 
field scale, in a manner that can be performed with relatively low skill on 
public data, using open-source tools. This methodology shares many simi-
larities with optical/thermal and microwave fusion methods of soil-moisture 
downscaling, as well as polynomial fitting approaches (Peng et al. 2016). 
However, this model is adaptable to heterogeneous conditions within a single 
scene, unlike traditional polynomial fitting models, and has fixed variables, 
unlike many learning models. While we are using SMAP, there is no reason 
other sensors such as SMOS, ASCAT, or AMSR-E could not supplant SMAP 
in the algorithm, with minor adjustments. The inferred learning approach 
appears to be non-conservative, meaning that the aggregated high-resolution 
soil moisture is not necessarily equal to the coarse soil-moisture resolu-
tion. Furthermore, the conceptual validity of the method is drawn from 
the Soil-Vegetation-Atmosphere Transfer (SVAT) triangle model. While 
temperature and the Normalized Difference Vegetation Index (NDVI) are 
both accounted for in the variables used by this method, the albedo effect, 
as explained by Zhan et al. (2002) and Chauchan et al. (2009), is replaced by 
two direct-sensing soil-moisture indices, in addition to a new variable that 
appears to describe well the lack of moisture. The polynomial methodol-
ogy is not incorporated into the inductive random forest algorithm, which 
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addresses the anomalous features or transitions in climatic, topographic, 
or biotic schemes, because a fitted solution would be biased against such 
shifts. Nevertheless, our method enjoys the same advantages of polynomial 
fitting methods, in that it does not require in-situ measurements (Peng et 
al. 2016) but does require clear atmospheric conditions and has not been 
tested extensively in dense vegetation regions. This methodology, at present, 
is limited in its application to arid and semi-arid regions, due to the need 
for soil temperature estimation.

Finally, this algorithm is similar to downscaling but is not actually a 
standard method of downscaling. Instead, it performs rule transference 
across spatial resolutions, and is best described as a hybrid model between 
statistical and optical/thermal fusion. Typical downscaling is a granularity-
increasing exercise, whereas our approach ignores and discards the original 
SMAP data after rule learning is complete, and the SMAP data is not as-
similated into the final product. However, for convenience in this text, we 
continue to refer to our method as a downscaling product. This method of 
downscaling is linked to the feature attribute selection, described in the fol-
lowing section. The attribute selection was done naively, without reference 
to current methods of downscaling, and its similarity to other methods, 
such as the triangle method described below, arose from evaluation of the 
highest-performing attribute selections.

Materials and Methods
This study was an exploration in the effectiveness of a rule transference algo-
rithm is downscaling soil moisture. However, organizationally it is a smaller 
study of feature selection within the larger downscaling study. While the 
feature selection is of importance to understand the downscaling method, it 
is not being directly evaluated outside the wholistic nature of the algorithm. 
Therefore, the feature selection testing is outside the scope of this report 
but is included in the following section, to familiarize the reader with the 
underlying methodology and importance of the variables chosen. Follow-
ing a discussion of feature selection, we will discuss the rule-transference 
algorithm. This method of statistical downscaling using a random forest was 
selected in order to accommodate various biome and topographic regimes 
within the large sampling space. Finally, this study utilizes data from the 
SMAPEx-5 campaign performed in the area of Yanco, Australia (Ye et al. 
2017), for validation. This field study utilized several remote-sensing instru-
ments and in-situ sensors, but it utilizes the airborne Polarimetric L-band 
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Multibeam Radiometer (PLMR) and intensive near-surface measurement of 
near-surface soil moisture, using capacitance sensors over a regular sampling 
pattern of 250m spacing across three 3km x 3km focus fields. 

Feature Attribute Selection

Feature attribute selection is the act of pairing down variables from a full 
set of variables to those most able to increase performance and which 
contain the least amount of redundancy. Models using many variables can 
be unnecessarily complicated, but should generally be kept as simple as 
possible while using as few initialization parameters as possible to attain 
the desired outcome, unless there is an explicit reason for doing otherwise. 
Reducing initial variables helps minimize generalization errors (Cannon 
& Whitfield 2002). Furthermore, for computational efficiency, the training 
times on lower-dimension models are significantly faster and many times 
more accurate than higher-dimension algorithms, a situation known as the 
curse of dimensionality.

In this study, initial variable exploration used field-collected point time-
domain reflectometry (TDR), point COsmic-ray Soil Moisture Observing 
System (COSMOS) data, and field-collected volumetric soil-moisture data 
from multiple sites, including Nevada, New South Wales, and Arizona, in the 
spring, summer, and fall of the years 2014–15. These collections were made 
for multiple projects run by the Army Corps of Engineers but were reused in 
this project for feature selection. From the initial collection of soil moisture 
point readings, we used those that also coincided with Landsat imagery 
within a day of the reading. This created a training set with a varied biome 
and soil type spanning 12,555 Landsat pixels. This distribution of training 
sites would diminish seasonal and soil specifics to elevate more-universal 
relationships in the testing phase. Landsat 8 level-1 digital number (DN) 
values were extracted for each pixel over all bands of a sample set, to test the 
relationships between the variables and pair them. As we are interested only 
in evaluating ratios, the DN do not need to be radiometrically corrected, 
although we did perform dark-object subtraction. This was also a conscious 
choice, with the goal of achieving an easily copied method using open-source 
data and processing so that surface soil-moisture maps could be generated by 
anyone with a computer. Since these are arid to semi-arid regions, there will 
be inherently less atmospheric intrusion in the signal as well. In 2001, Song 
et al. tested a variety of atmospheric correction techniques using Landsat 
Thematic Mapper data and concluded that atmospheric correction is only 
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necessary when comparing across images with differing spatiotemporal 
characteristics. While indices such as NDVI may shift upward by perhaps 
twenty percent without correction (Nigam, et al. 2012), if such shifts are 
accommodated in the training then they are accommodated in the testing 
phase as well. Variables are generated through the iterative ratio of each band 
with every other band. In the following iteration, the ratio is calculated with 
all previous bands, continuing through four iterations. Working exclusively 
with ratios largely nullifies atmospheric effects because each band value is 
affected relatively, and all values in a single set of scenes take over a similar 
region on the same day.

This created a very large dataset of Landsat variables to test against. 
Beginning with 11 Landsat bands, the ratios of each band presented a rapid 
expansion of variables according to the triangle number of starting vari-
ables, so that the initial 11 Landsat band set generated 66 variables in the 
first iteration of ratios and 2,211 in the second one. We should note that the 
panchromatic resolution, band 8, was aggregated to 30 m, whereas bands 
10 and 11 were assigned the value at the spatial pixel centerpoint of bands 
1–7; this is also how they are dealt with in the final processing. Due to the 
massive number of variables and a need for multiple evaluations, Jonathon 
Nunez, a master’s student from the University of Puerto Rico, assisted by 
running a parallel evaluation to confirm or deny variable effectiveness. 
Because such a large dataset would be computationally difficult, the initial 
pairing was conducted through correlation feature selection in MS Excel. All 
the attributes were tested against field-sampled soil-moisture surfaces, col-
lected using TDR or FDR (Frequency Domain Reflectometry), with Pearson’s 
correlation coefficient. To conform with the computing requirements and 
the column limits of the spreadsheet program, only the variables showing 
the highest positive or negative correlations to the measured moisture were 
brought forward to the next two iterations. Those attributes scoring above 
the absolute value of 0.65, a natural cut-off in the data below which most 
variables fell, were brought forward for additional testing using a wrapper 
method with a random forest classifier using Weka, an open-source platform 
developed by the University of Waikato in New Zealand. Although lower-
correlation attributes were occasionally brought forward if they showed a 
higher ranking in information gain, a secondary test was used for marginal 
variables. The 20 highest performing variables were compared in terms of 
correlation-based feature selection, information gain, redundancy, principal 
component analysis, and learner-based feature selection using the random 
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forest algorithm. The eight selected final variables represented the highest-
performing variables across the selection criteria. Interestingly, Variable 
16 was included in these due to its consistency and information gain, even 
though it rarely scored in the top three-to-five attributes. In the final analysis, 
the algorithm performed better with this variable than without it. We also 
included many initial pre-existing VIS/IR ratio variables in addition to the 
NDVI, from the full list of vegetation-, soil-, and hydrology-related indices 
of the Index DataBase (Verena 2012). These variables were excluded from 
the initial correlation feature selection but were included in the wrapper 
selection phase. Test of prediction skill, multicollinearity, and leave-one-out 
variable testing provided a base set of eight variables.

Evaluation of similarity on the remaining variables seemed to suggest 
they fit well into three clusters, or variable neighborhoods. Neighborhood 1 
seemed to determine moisture from the temperature variations in the soil, 
while Neighborhood 2 attempted to directly detect water. Neighborhood 3 
uses a vegetation proxy to identify moisture and, therefore, is associated with 
plant vigor. We quickly noticed that these neighborhoods of variables are 
also representative proxies for the key components of the SVAT “triangle” 
model. The triangle method is independent of readings from a site outside 
those that can be obtained from the red, NIR, and thermal bandwidths. 
However, it requires multiple data points to establish the triangle of the 
method. The triangle is a scatterplot of NDVI against thermal surface data. 
The assumption is that, given a sufficiently large sampling, the pixels exhibit 
a sufficiently large variance to plot the full range of possible scenarios from 
wet to dry and from bare to a fully vegetated Earth (Carlson 2007). This scat-
terplot forms a triangle that delineates a shape “warm edge” where surface 
temperature is higher than in other similarly vegetated pixels, indicating a 
lack of water (Figure 1). The assumption made is that vegetation temperature 
does not vary spatially and that surface temperature alone accounts for the 
variation seen, at least within the detection error margin (Carlson 2007). 
This is somewhat in disagreement with the work done earlier by Thomas 
Jackson of the USDA on the moisture availability of foliage and temperature 
(Jackson et al. 1981). However, the leaf area-sourced radiation is minor in 
comparison to the ground temperature effect. The “cool edge,” somewhat 
less defined, represents pixels with adequate or excess moisture for cooling. 
The lower surface trails off into a low-density point dispersion, which can be 
accounted for by surficial anomalies, such as standing bodies of water, and 
clouds, and should be removed to create a cluster in a tight arrangement.
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This model requires some degree of subjectivity in defining the triangle 
edges, which poses a problem for cross-site and cross-experiment com-
parisons. A sufficiently large number of instances is also required, often 
hundreds to thousands of points, assuming that soil characteristics remain 
rather uniform overall. Despite the apparent subjectivity of the method, 
Carlson (2007) found that the error in estimating the evapotranspiration 
function, and thus the available soil moisture, from such a method is typi-
cally ± 0.1–0.2 (Carlson 2007), near the theoretical minimum.

Replacing our created Neighborhood 2 ratio variables with estab-
lished variables such as the Modified Normalized Difference Water Index 
(MNDWI) and the Normalized Soil Moisture Index (NMSI) demonstrated 
better performance in test/train scenarios using our original training dataset. 
Neighborhood 1 (thermal) was best served by the two new ratio variables, 
referred to as Variable 2 and Variable 10 in our testing. Neighborhood 3 is 
well served by the NDVI alone. A third variable, Variable 16, has also shown 
promise in discriminating soil moisture in vegetated areas, and was brought 
forward due to repeatedly high performance and high independence from 
other variables. Notice that we have two variables, each describing the three 
aspects, or neighborhoods, of soil moisture detection: surface heat, vegeta-
tion vigor, and spectral water detection. It is important that both variables 
have low collinearity with each other, yet describe well the underlying aspect. 

Figure 1.—Triangle method scatterplot (Carlson 2007).
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The final set consists of six variables. Three of them, NDVI, NMSI, and 
MNDWI, are predefined variables. Variable 2 is a simple ratio representing 
the thermal return, whereas the other two, Variable 10 and Variable 16, are 
unique to this algorithm. The numbers of the variables are simply the names 
used while testing the final set of twenty variables.

The final variable set (using Landsat 8, level 1 data) is:
Var10: (Pan/TIRS2)/(Cirrus/TIRS1)
Var2: Coastal/TIRS1
Var16: (Red × SWIR2^3)/(NIR × SWIR1^2)
NDVI: (NIR − Red)/(NIR + Red)
NMSI: (SWIR2 – SWIR1)/(SWIR2 + SWIR1)
MNDWI: (Green – SWIR1)/(Green + SWIR1)

The Learning Algorithm
After the variables were chosen, it was necessary to choose the dependent 
variable, which was not obvious, since precise data on the time and location 
related to soil moisture is often unavailable. Here, the SMAP values provide 
a local training set and the independent variable to the machine learning 
algorithm. Our test site is the SMAPex-5 field campaign in support of the 
SMAP validation project in the Murumbidgee River Valley, NSW Australia 
(Ye et al. 2017; Panciera 2013).

The model tree iteratively splits a training set of variables in order to 
minimize the regression error, until the deviation is only a small fraction 
of the standard deviation of the original instance. At that point, the split-
ting process ceases, and the model is pruned back by one node. At the new 
tree branch termination, called the leaf, a regression model is constructed 
to describe the data reaching that leaf. This construct creates a non-linear, 
piecewise function that describes the data. Model trees deliver better com-
pactness and prediction accuracy in comparison to classical regression trees 
(Deepa et al. 2010). However, a fault often seen in model trees is a tendency 
toward overfitting (Hastie et al. 2008). In order to avoid such problems, an 
ensemble method of generalization is used. The random forest corrects 
for this by assimilating multiple decision trees based on selections of data 
points, building multiple decision trees, and using a voting model based on 
the aggregated results, a method similar to bootstrap aggregating. Machine 
learning algorithms can be inherently unstable, with small changes in the 
training data, producing vastly different models. Bootstrap aggregation 
works by resampling with replacement on the training data multiple times 
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and then averaging the mean of the member models (Cannon and Whitfield 
2002). This averaging process effectively controls model variance, preventing 
errors due to instability of the model and/or limited training data, without 
increasing the overall bias (Breiman 1996). In this lies the strength of the 
random-forest algorithm. A noted limitation of random forests is the in-
ability to predict regression beyond the range of the training data. Due to 
the multifractal nature of soil moisture, this may pose a problem in that as 
we increase soil moisture resolution, we also expect to increase the maxi-
mum value in our population. While a higher-resolution sampling method 
may help alleviate this problem, it is a known limitation within this study.

This downscaling algorithm (Figure 2) is a form of transfer learning 
in which rules are learned at the native SMAP resolution using coarsened 
Landsat data and then applied at the native Landsat resolution to achieve a 
higher-resolution product. The Landsat values must be aggregated up to the 
SMAP pixel size to determine the localized ruleset. We used ESRI’s raster 
aggregation using a median strategy to match the SMAP pixel size; however, 
the process can be repeated in QGIS or other open-source systems. We then 
used a random forest in Weka, due to its superior performance over other 
algorithms in our local testing. 

The rules from the aggregated Landsat data are then utilized at the 
Landsat native resolution of 30m to provide the downsampled soil moisture 
surface. The rules are variable across regions and not transferable across 
Landsat scene sets, due to the differences in the land surface model and the 
ability of the spectral and thermal data to fully encompass the full range of 
periodic and localized events. The term “scene set” refers to a single scene 
as well as the previous and following scene in a single path. While the al-
gorithm rule set must be recreated for each scene set, the overall algorithm 
remains the same. In a continental-scale implementation of this process, 
a moving window approach would be appropriate in which each Landsat 
scene is processed against the corresponding SMAP granule as well as the 
granule above and below in the path. 

Essentially, this is a simple process for determining soil moisture in 
relatively arid and semi-arid environments. Landsat data is aggregated to 
the SMAP scale, and the six aforementioned variables are created to train 
against the SMAP soil-moisture estimate, which is the dependent variable 
here. The trained random-forest algorithm is then kept and applied at the 
native Landsat resolution to create much higher-resolution soil-moisture 
estimation. This algorithm must be rerun for each new Landsat scene, as 
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local variations in insolation, humidity, soil drying, and topography change 
the rule set. We propose that three adjacent along-track Landsat scenes 
should be used to provide ample training data; indeed, using a larger area 
should be avoided due to biome changes. Furthermore, the area of each 
Landsat scene is most likely the maximum area that can be covered in one 
run of this algorithm. The training data should be an along-track moving 
window encompassing both adjacent scenes, if possible. Aggregating the 

Figure 2.—Process flowchart of localized downscaling process via inferred learning of soil 

moisture. See Figure 3 for a map of multiple SMAP grid pixels captured in three granules 

from a single pass. Variable selection is not a repeated process and is therefore not part 

of the process; the variables are predefined above, and we suggest maintaining those 

relationships.
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final product may be required for minimal error, but this study was run at 
the native Landsat resolution of 30m.

Validation Data

Ground truth over the area is available via an excellent dataset of capaci-
tance or frequency domain reflectometry (FDR), which will be discussed 
below. However, the coverage of this dataset is minimal compared with the 
entire range of the tested region. An airborne L-band radiometer (PLMR) 
also obtained readings on the same day and is the primary source used to 
validate the localized downscaling method. However, a field within the test 
region, referred to as field C in this study (SMAPEx Y7), was purposely set 
aside in feature selection to not contaminate data when testing. In-situ soil 
moisture will be compared to both the PLMR data and the rule transference 
algorithm. Ideally, the rule transference algorithm will perform as well as the 
PLMR, an already accepted method of soil moisture estimation, over field C.

Results
Airborne L-band radiometry is well accepted as a reliable, remote-sensing 
soil-moisture measuring technique. Overall, the predictive power of the 
downscaled soil moisture is satisfactory, although just outside the NASA 
standard of 0.04 for the SMAP validation program (NASA 2020). The data-
set includes the full population of 3,097 pixels by 2,257 pixels, for a total of 
6,989,929 samples, with an absolute error of 0.054 over the L-band retrieved 
surface (Tables 1 and 2; Figures 3 and 4).

Table 1. The mean of the proposed algorithm is 0.26, and the mean of the 

L-band retrieval is 0.28; the mean absolute error (MAE) is 0.05.

The comparison between the Landsat solution and the original SMAP 
data is admittedly imperfect, because the Landsat-inferred solution does not 
cover all the SMAP pixels involved. Therefore, variance increases with the 
observation resolution. This provides some support to the self-affine fractal 
distribution of soil moisture. The Landsat solution has a standard deviation 
of 0.066, while the six SMAP pixels overlapping the Landsat investigation 
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Figure 3.—Field soil-moisture measurement grids in which capacitance measurements 

were conducted in triplicate within the field of the airborne radiometers collection. The 

radiometer is within the SMAP sampling and Landsat aggregation region (see upper right 

inset) on 14 August 2015. The north and southeast points were included in the original 

training set and excluded from the testing set.
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region have a standard deviation of 0.038. As the standard deviation is the 
square root of the variance, the variance of the Landsat solution is 0.0044, 
and the variance of the SMAP distribution is 0.0015. This increased vari-
ability in the Landsat solution suggests the learning algorithm was able to 
determine increased variability in the data at higher resolution, as would be 
expected in a self-affine multi-fractal system. The total mean of the Landsat 
solution is quite high compared with the SMAP mean of 0.21; however, again, 
the SMAP pixels extend beyond the Landsat investigation region into drier 
regions to the north, and the Landsat mean is still lower than the L-band 
PLMR solution. Kurtosis and skewness in both datasets remain remarkably 
similar, with the SMAP skewness at −0.59 and the Landsat solution at −0.48, 
while kurtosis is −1.68 and −1.25, respectively.

Table 2. Magnitude of error within the algorithm, based on the L-band surface. 

Currently, 56.44 percent of the results meet the NASA specifications of 0.04, 

indicating that the L-band retrieval was accurate.

While qualitatively the two surfaces derived from PLMR and Landsat 
provide similar solutions to volumetric soil moisture, a more quantita-
tive review is required. Three high-density soil-moisture FDR point fields 
were obtained on the same test day. The central field (Site C) was left out 
of any portion of the training and testing on variable selection to provide a 
completely independent dataset. This is likely not a necessary precaution, 
given the wide range of other datasets included, but it is generally a good 
practice to test on truly independent data that have not influenced testing 
in any way. We evaluated the inferred solution against the radiometer and 
the point-collected data, although the FDR point data is for informational 
purposes only at sites N and SE.

First, an evaluation of the Landsat-inferred rule-transfer soil moisture 
versus the radiometer measurement from the PLMR shows a very good 
agreement of the field site, with an R2 of 0.8278 (Figure 5). This is in stark 
contrast to the point data that has a much lower agreement, with an R2 of 
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Figure 5.—Qualitative review of 

error between the L-band retrieval 

and the Landsat–SMAP downscaling 

algorithm.

Figure 6.—Scatterplot of Landsat-inferred soil moisture versus the soil moisture estimated 

from the PLMR at Site C.
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Figure 7.—Overview of validation field C (SMAPex site Y7), with NDVI on the upper 

right with overlain field-collection points. On the center left is a false-color image 

showing the vegetated field on the west side of the road, while the east is primarily 

ranchland. The lower three images are kriged soil-moisture surfaces from point data 

(left), the Landsat-inferred method (center), and PLMR soil moisture data (right).
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0.2985. Nevertheless, given the R2 of the PLMR versus the soil moisture in 
the sample field of 0.2026, this seems a reasonable, albeit low, value (Figure 6).

To confirm that the population from the Landsat-inferred method is as 
valid as that from the L-band PLMR method, we conducted an equivalence 
test, which is a two one-sided t-test (TOST). This test is useful for proving 
equivalence in the same manner as the standard t or F tests are used to 
prove dissimilarity. The TOST results for the control group 1 (PLMR) and 
the test group 2 (Landsat-inferred method) compared over the entirety of 
the three sample fields are significant to p = 0 based on both Cohen’s d and 
raw scores, regardless of an assumption of equal variance.

Discussion
Our method shows considerable fitness in describing the soil moisture 
distribution at a significantly higher resolution than other currently avail-
able methods using SMAP alone. The method utilizes the refined SMAP 
algorithm, ingraining in the results the description of the soil-moisture 
relationship to the spectral conditions on the ground. While the method 
does not provide accuracy within the 0.04 range required by the NASA 
SMAP mission in this experiment, this may be achievable with additional 
variable refinement or additional validation. Capacitance soil monitors, like 
all point-based in-situ soil measurements, observe ground conditions in a 
highly localized area, no more than 1.2in beyond the waveguides (Munoz–
Carpena et al. 2004). Since such a small sample of the pixel space is tested, the 
point soil-moisture values assigned to a pixel in the original interpretation 
of the L-band may not be accurate in describing the true value of the pixel, 
but instead may fall within the tail of the distribution of the soil-moisture 
values within a pixel. This can be demonstrated by evaluating the number 
of moisture sample points within a 30-m Landsat pixel and the error of 
that averaged point moisture value with the downscaled Landsat-inferred 
algorithm results. As the number of point measurements increases within a 
single cell, the error from both the inferred and the PLMR data to that mea-
sured aggregated soil-moisture value is expected to decrease. Over the study 
region, cells with an average of one to four measurements have an average 
error of 0.1m3/m3, which decreases to about 0.08m3/m3, with five readings 
per cell, and falls below 0.05m3/m3 error with seven readings. In short, over 
a large validation field, point samples are insufficient for validation at lower 
counts, as their coverage is far below the required one in adequately defining 
the pixel value. As this study was designed for lower-resolution validation 
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of the SMAP instrument, it may not serve to compare the inferred solution 
to soil-moisture FDR points. This is an ongoing problem in the study of 
soil moisture. Direct measurement is required for ground truth, but this is 
highly laborious and spatially covers a small area.

While the sheer number of observations aids the alleviation of some 
of the training errors, a large number of them can affect the training algo-
rithm that allocates the transition variables from a raw L-band return to 
soil-moisture content. Among the three sampling regions of soil-moisture 
point collection, two were used for scaling the L-band radiometer data 
while the third (Site C, see Figure 6) was used for testing. That region (Site 
C) experienced a 0.0628 Mean Average Error (MAE), not too dissimilar 
from the slightly lower 0.0606 MAE seen over the same test region for the 
Landsat-inferred data and the point measurements. However, the Landsat-
inferred data and the radiometer demonstrated a significantly higher 
coupling in their returns with a 0.0071 MAE, suggesting that the Landsat/
SMAP-inferred algorithm produced a dataset with a stronger description 
of the L-band radiometer data than that of the point sampling, and thus is 
a viable option for downscaling SMAP into the local resolution (Table 3). 
The Root Mean Standard Error (RMSE) for the Landsat/SMAP rule trans-
ference algorithm to FDR measured values is 0.105 over the entirety of the 
scene. Given the heterogeneity of the scene, the MAE and RMSE values of 
the target evaluation sites are shown in Table 7.

Table 3. Mean Absolute Error (MAE) and Root Mean Standard Error (RMSE) 

over selected test sites (C, N, SE). RF is the Random Forest of the Landsat-

inferred rule transference method, while FDR is the frequency domain site 

sampling. Micro refers to the PLMR.

                         n = 515

 All                       Mean Abs Err RMSE

RF-Micro 0.007359559 0.009398089

RF-FDR 0.068428304 0.091237308

Micro-FDR 0.070209739 0.093150219
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       n = 197    

 Site C                   Mean Abs Err RMSE

RF-Micro 0.00710297 0.009136707

RF-FDR 0.060604748 0.074836289

Micro-FDR 0.062825105 0.077160298

                     
                         n = 210 

  Site N                     Mean Abs Err RMSE

RF-Micro 0.008557376 0.010510188

RF-FDR 0.061731992 0.079604448

Micro-FDR 0.064656494 0.082503581

                         n = 208

  Site SE                   Mean Abs Err RMSE

RF-Micro 0.006393245 0.00839998

RF-FDR 0.082598815 0.113624224

Micro-FDR 0.082810481 0.114648599

An obvious disadvantage of our method is that visual remote sensing 
cannot obtain imagery through cloud cover, as opposed to a microwave. 
Nevertheless, our algorithm does allow for widespread, moderately high-
resolution soil-moisture capture over large regions. This could be a viable 
option for detecting moderately high-resolution soil moisture in arid and 
semi-arid regions, as well as for soil-moisture pattern-distribution analysis.

This easily accessible algorithm is highly reproducible and provides a 
framework for users to understand soil-moisture conditions and distribu-
tions in localized areas at an actionable resolution. This is especially useful 
for those who need such data but do not have extensive resources on hand, as 
this can be programmatically run using public data and without specialized 
training. The methodology is robust and learns site and seasonal variation 
on the fly, creating a unique solution for each instantiation of the algorithm. 
While other methodologies have created similar solutions, most notably the 
UCLA method of Jiang and Islam (2003), using temperature and vegetation 
indices as proxies for downscaling, few have done so in a machine-learning 
environment. Those that have produced similar solutions did not perform 
a thorough, variable pairing process to identify the key variables governing 
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the process, nor did they include multidimensional variables. This method 
is repeatable and programmable, and the learning algorithm changes for 
each iteration, but the processing never alters. No information is needed, 
other than the passive microwave soil-moisture and Landsat Earth Obser-
vation Remote Sensing data (although other optical systems may be used). 
The machine-learning algorithm also enables something none of the other 
algorithms address, which is differentiating soil moisture schemes existing 
within the same scene, such as a swath of drying soils in the same scene as 
saturated soils.

Two new variables have been identified from the exhaustive variable 
pairing process: Variable 16 and Variable 10. Variable 16 is a dimensional 
expansion of NDVI, an alternative methodology for quantifying photo-
synthesizing vegetation. Variable 10 is a complex variable corresponding 
to the total visible reflectivity but modified by a thermal response. These 
two variables, along with the other four identified as key to describing soil 
moisture, seem to be able to describe well the SVAT. This was hypothesized 
after a completely independent exploration of variables was completed. In-
stead of using deterministic models to guide the variable selection, we used 
inferred learning to identify the variables and then noticed they seemed to 
be describing the currently used model.

This easy soil-moisture algorithm requires a clear atmosphere and is 
not yet demonstrated over non-arid or semi-arid environments. However, 
for field validation techniques, periodic snapshots of soil-moisture condi-
tions for agriculture, traffic ability, health vectors, water management, and 
forecasting, this approach could provide an accessible methodology for 
high-resolution soil moisture to just about anyone with a computer and an 
Internet connection.
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