Description
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import pyarrow as pa
decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))
series = pd.Series([1, None], dtype=decimal_type)
pd.to_numeric(series, errors="coerce")
Issue Description
pandas.to_numeric
fails to coerce Pyarrow Decimal series that contain NA values due to those NA values getting dropped, leading to an index mismatch:
import pandas as pd
import pyarrow as pa
decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))
series = pd.Series([1, None], dtype=decimal_type)
pd.to_numeric(series, errors="coerce")
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[13], line 8
4 decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))
6 series = pd.Series([1, None], dtype=decimal_type)
----> 8 pd.to_numeric(series, errors="coerce")
File /opt/homebrew/lib/python3.13/site-packages/pandas/core/tools/numeric.py:319, in to_numeric(arg, errors, downcast, dtype_backend)
316 values = ArrowExtensionArray(values.__arrow_array__())
318 if is_series:
--> 319 return arg._constructor(values, index=arg.index, name=arg.name)
320 elif is_index:
321 # because we want to coerce to numeric if possible,
322 # do not use _shallow_copy
323 from pandas import Index
File /opt/homebrew/lib/python3.13/site-packages/pandas/core/series.py:575, in Series.__init__(self, data, index, dtype, name, copy, fastpath)
573 index = default_index(len(data))
574 elif is_list_like(data):
--> 575 com.require_length_match(data, index)
577 # create/copy the manager
578 if isinstance(data, (SingleBlockManager, SingleArrayManager)):
File /opt/homebrew/lib/python3.13/site-packages/pandas/core/common.py:573, in require_length_match(data, index)
569 """
570 Check the length of data matches the length of the index.
571 """
572 if len(data) != len(index):
--> 573 raise ValueError(
574 "Length of values "
575 f"({len(data)}) "
576 "does not match length of index "
577 f"({len(index)})"
578 )
ValueError: Length of values (1) does not match length of index (2)
This seems to be due to this conversion to a numpy type setting the dtype to object
, which causes this condition to be false, which skips re-adding the NA values, leading to a final values
array shorter than the original index.
Expected Behavior
I'd expect the series to get converted (to values of decimal.Decimal
type, with dtype=object) without raising an exception, preserving the null elements.
Installed Versions
pandas : 2.2.3
numpy : 2.2.2
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 25.0
Cython : None
sphinx : None
IPython : 8.32.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.4
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2025.2.0
html5lib : None
hypothesis : 6.125.2
gcsfs : None
jinja2 : 3.1.5
lxml.etree : None
matplotlib : 3.10.3
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.2
sqlalchemy : 2.0.38
tables : None
tabulate : None
xarray : 2025.1.2
xlrd : None
xlsxwriter : None
zstandard : 0.23.0
tzdata : 2025.1
qtpy : None
pyqt5 : None
Activity
arthurlw commentedon Jun 13, 2025
Confirmed on main. PRs and investigations are welcome. From a quick look I do think that
.dropna()
from your link above does cause this issue.Thanks for raising this!
chilin0525 commentedon Jun 14, 2025
take
simonjayhawkins commentedon Jun 25, 2025
the docs for
pandas.to_numeric
state that "The default return dtype is float64 or int64 depending on the data supplied. Use the downcast parameter to obtain other dtypes."the whole point of
pandas.to_numeric
is to "Convert argument to a numeric type." and the return is "Numeric if parsing succeeded."So returning an object array does not seem appropriate?
Also note that an traditional object array does not properly support null values #32931, so i'm not so sure that putting pd.NA values in an object array is ideal?
kzvezdarov commentedon Jun 27, 2025
Makes sense; to be honest that was just my best guess after inspecting the partially constructed output with a debugger.
simonjayhawkins commentedon Jun 27, 2025
@mroeschke @jorisvandenbossche
Matt, interested on your views on how this should behave today with the "arrow dtypes" and Joris on the future of Decimal types (or other new numeric-like types) in general.
mroeschke commentedon Jun 27, 2025
IMO if a
ExtensionDtype._is_numeric is True
, I thinkto_numeric
should no-op with data passed with that type, including the arrow dtypes. So alternatively, I think thefloat64 or int64
noted in the documentation should be expanded with respect to all types that claim they are "numeric".chilin0525 commentedon Jul 2, 2025
Hi @simonjayhawkins @mroeschke , I’ve opened a PR for this issue and implemented the corresponding test case. I’d like to ask if the test result looks correct to you? Thanks 🙏