Skip to content

BUG: to_numeric fails to convert a Pyarrow Decimal series containing NA values. #61641

Open
@kzvezdarov

Description

@kzvezdarov

Pandas version checks

  • I have checked that this issue has not already been reported.

    I have confirmed this bug exists on the latest version of pandas.

    I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import pyarrow as pa

decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))

series = pd.Series([1, None], dtype=decimal_type)

pd.to_numeric(series, errors="coerce")

Issue Description

pandas.to_numeric fails to coerce Pyarrow Decimal series that contain NA values due to those NA values getting dropped, leading to an index mismatch:

import pandas as pd
import pyarrow as pa

decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))

series = pd.Series([1, None], dtype=decimal_type)

pd.to_numeric(series, errors="coerce")
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[13], line 8
      4 decimal_type = pd.ArrowDtype(pa.decimal128(3, scale=2))
      6 series = pd.Series([1, None], dtype=decimal_type)
----> 8 pd.to_numeric(series, errors="coerce")

File /opt/homebrew/lib/python3.13/site-packages/pandas/core/tools/numeric.py:319, in to_numeric(arg, errors, downcast, dtype_backend)
    316         values = ArrowExtensionArray(values.__arrow_array__())
    318 if is_series:
--> 319     return arg._constructor(values, index=arg.index, name=arg.name)
    320 elif is_index:
    321     # because we want to coerce to numeric if possible,
    322     # do not use _shallow_copy
    323     from pandas import Index

File /opt/homebrew/lib/python3.13/site-packages/pandas/core/series.py:575, in Series.__init__(self, data, index, dtype, name, copy, fastpath)
    573     index = default_index(len(data))
    574 elif is_list_like(data):
--> 575     com.require_length_match(data, index)
    577 # create/copy the manager
    578 if isinstance(data, (SingleBlockManager, SingleArrayManager)):

File /opt/homebrew/lib/python3.13/site-packages/pandas/core/common.py:573, in require_length_match(data, index)
    569 """
    570 Check the length of data matches the length of the index.
    571 """
    572 if len(data) != len(index):
--> 573     raise ValueError(
    574         "Length of values "
    575         f"({len(data)}) "
    576         "does not match length of index "
    577         f"({len(index)})"
    578     )

ValueError: Length of values (1) does not match length of index (2)

This seems to be due to this conversion to a numpy type setting the dtype to object, which causes this condition to be false, which skips re-adding the NA values, leading to a final values array shorter than the original index.

Expected Behavior

I'd expect the series to get converted (to values of decimal.Decimal type, with dtype=object) without raising an exception, preserving the null elements.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 0691c5c python : 3.13.2 python-bits : 64 OS : Darwin OS-release : 24.5.0 Version : Darwin Kernel Version 24.5.0: Tue Apr 22 19:53:27 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T6041 machine : arm64 processor : arm byteorder : little LC_ALL : en_CA.UTF-8 LANG : None LOCALE : en_CA.UTF-8

pandas : 2.2.3
numpy : 2.2.2
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 25.0
Cython : None
sphinx : None
IPython : 8.32.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.4
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2025.2.0
html5lib : None
hypothesis : 6.125.2
gcsfs : None
jinja2 : 3.1.5
lxml.etree : None
matplotlib : 3.10.3
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.2
sqlalchemy : 2.0.38
tables : None
tabulate : None
xarray : 2025.1.2
xlrd : None
xlsxwriter : None
zstandard : 0.23.0
tzdata : 2025.1
qtpy : None
pyqt5 : None

Activity

added
Needs TriageIssue that has not been reviewed by a pandas team member
on Jun 12, 2025
arthurlw

arthurlw commented on Jun 13, 2025

@arthurlw
Member

Confirmed on main. PRs and investigations are welcome. From a quick look I do think that .dropna() from your link above does cause this issue.

Thanks for raising this!

added
Arrowpyarrow functionality
Dtype ConversionsUnexpected or buggy dtype conversions
and removed
Needs TriageIssue that has not been reviewed by a pandas team member
on Jun 13, 2025
chilin0525

chilin0525 commented on Jun 14, 2025

@chilin0525
Contributor

take

simonjayhawkins

simonjayhawkins commented on Jun 25, 2025

@simonjayhawkins
Member

Expected Behavior

I'd expect the series to get converted (to values of decimal.Decimal type, with dtype=object) without raising an exception, preserving the null elements.

the docs for pandas.to_numeric state that "The default return dtype is float64 or int64 depending on the data supplied. Use the downcast parameter to obtain other dtypes."

the whole point of pandas.to_numeric is to "Convert argument to a numeric type." and the return is "Numeric if parsing succeeded."

So returning an object array does not seem appropriate?

Also note that an traditional object array does not properly support null values #32931, so i'm not so sure that putting pd.NA values in an object array is ideal?

kzvezdarov

kzvezdarov commented on Jun 27, 2025

@kzvezdarov
Author

Expected Behavior

I'd expect the series to get converted (to values of decimal.Decimal type, with dtype=object) without raising an exception, preserving the null elements.

the docs for pandas.to_numeric state that "The default return dtype is float64 or int64 depending on the data supplied. Use the downcast parameter to obtain other dtypes."

the whole point of pandas.to_numeric is to "Convert argument to a numeric type." and the return is "Numeric if parsing succeeded."

So returning an object array does not seem appropriate?

Also note that an traditional object array does not properly support null values #32931, so i'm not so sure that putting pd.NA values in an object array is ideal?

Makes sense; to be honest that was just my best guess after inspecting the partially constructed output with a debugger.

simonjayhawkins

simonjayhawkins commented on Jun 27, 2025

@simonjayhawkins
Member

@mroeschke @jorisvandenbossche

Matt, interested on your views on how this should behave today with the "arrow dtypes" and Joris on the future of Decimal types (or other new numeric-like types) in general.

mroeschke

mroeschke commented on Jun 27, 2025

@mroeschke
Member

IMO if a ExtensionDtype._is_numeric is True, I think to_numeric should no-op with data passed with that type, including the arrow dtypes. So alternatively, I think the float64 or int64 noted in the documentation should be expanded with respect to all types that claim they are "numeric".

chilin0525

chilin0525 commented on Jul 2, 2025

@chilin0525
Contributor

Hi @simonjayhawkins @mroeschke , I’ve opened a PR for this issue and implemented the corresponding test case. I’d like to ask if the test result looks correct to you? Thanks 🙏

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Metadata

Assignees

Labels

Arrowpyarrow functionalityBugDtype ConversionsUnexpected or buggy dtype conversions

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

    Participants

    @kzvezdarov@mroeschke@simonjayhawkins@chilin0525@arthurlw

    Issue actions

      BUG: `to_numeric` fails to convert a Pyarrow Decimal series containing NA values. · Issue #61641 · pandas-dev/pandas