-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
linux_memfd_allocator.zig
195 lines (166 loc) · 6.22 KB
/
linux_memfd_allocator.zig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
const bun = @import("root").bun;
const std = @import("std");
/// When cloning large amounts of data potentially multiple times, we can
/// leverage copy-on-write memory to avoid actually copying the data. To do that
/// on Linux, we need to use a memfd, which is a Linux-specific feature.
///
/// The steps are roughly:
///
/// 1. Create a memfd
/// 2. Write the data to the memfd
/// 3. Map the memfd into memory
///
/// Then, to clone the data later, we can just call `mmap` again.
///
/// The big catch is that mmap(), memfd_create(), write() all have overhead. And
/// often we will re-use virtual memory within the process. This does not reuse
/// the virtual memory. So we should only really use this for large blobs of
/// data that we expect to be cloned multiple times. Such as Blob in FormData.
pub const LinuxMemFdAllocator = struct {
fd: bun.FileDescriptor = .zero,
ref_count: std.atomic.Value(u32) = std.atomic.Value(u32).init(0),
size: usize = 0,
var memfd_counter = std.atomic.Value(usize).init(0);
pub usingnamespace bun.New(LinuxMemFdAllocator);
pub fn ref(this: *LinuxMemFdAllocator) void {
_ = this.ref_count.fetchAdd(1, .monotonic);
}
pub fn deref(this: *LinuxMemFdAllocator) void {
if (this.ref_count.fetchSub(1, .monotonic) == 1) {
_ = bun.sys.close(this.fd);
this.destroy();
}
}
pub fn allocator(this: *LinuxMemFdAllocator) std.mem.Allocator {
return .{
.ptr = this,
.vtable = AllocatorInterface.VTable,
};
}
pub fn from(allocator_: std.mem.Allocator) ?*LinuxMemFdAllocator {
if (allocator_.vtable == AllocatorInterface.VTable) {
return @alignCast(@ptrCast(allocator_.ptr));
}
return null;
}
const AllocatorInterface = struct {
fn alloc(_: *anyopaque, _: usize, _: u8, _: usize) ?[*]u8 {
// it should perform no allocations or resizes
return null;
}
fn resize(_: *anyopaque, _: []u8, _: u8, _: usize, _: usize) bool {
return false;
}
fn free(
ptr: *anyopaque,
buf: []u8,
_: u8,
_: usize,
) void {
var this: *LinuxMemFdAllocator = @alignCast(@ptrCast(ptr));
defer this.deref();
bun.sys.munmap(@alignCast(@ptrCast(buf))).unwrap() catch |err| {
bun.Output.debugWarn("Failed to munmap memfd: {}", .{err});
};
}
pub const VTable = &std.mem.Allocator.VTable{
.alloc = &AllocatorInterface.alloc,
.resize = &resize,
.free = &free,
};
};
pub fn alloc(this: *LinuxMemFdAllocator, len: usize, offset: usize, flags: std.posix.MAP) bun.JSC.Maybe(bun.JSC.WebCore.Blob.ByteStore) {
var size = len;
// size rounded up to nearest page
size += (size + std.mem.page_size - 1) & std.mem.page_size;
var flags_mut = flags;
flags_mut.TYPE = .SHARED;
switch (bun.sys.mmap(
null,
@min(size, this.size),
std.posix.PROT.READ | std.posix.PROT.WRITE,
flags_mut,
this.fd,
offset,
)) {
.result => |slice| {
return .{
.result = bun.JSC.WebCore.Blob.ByteStore{
.cap = @truncate(slice.len),
.ptr = slice.ptr,
.len = @truncate(len),
.allocator = this.allocator(),
},
};
},
.err => |errno| {
return .{ .err = errno };
},
}
}
pub fn shouldUse(bytes: []const u8) bool {
if (comptime !bun.Environment.isLinux) {
return false;
}
if (bun.JSC.VirtualMachine.is_smol_mode) {
return bytes.len >= 1024 * 1024 * 1;
}
// This is a net 2x - 4x slowdown to new Blob([huge])
// so we must be careful
return bytes.len >= 1024 * 1024 * 8;
}
pub fn create(bytes: []const u8) bun.JSC.Maybe(bun.JSC.WebCore.Blob.ByteStore) {
if (comptime !bun.Environment.isLinux) {
unreachable;
}
var label_buf: [128]u8 = undefined;
const label = std.fmt.bufPrintZ(&label_buf, "memfd-num-{d}", .{memfd_counter.fetchAdd(1, .monotonic)}) catch "";
// Using huge pages was slower.
const fd = switch (bun.sys.memfd_create(label, std.os.linux.MFD.CLOEXEC)) {
.err => |err| return .{ .err = bun.sys.Error.fromCode(err.getErrno(), .open) },
.result => |fd| fd,
};
if (bytes.len > 0)
// Hint at the size of the file
_ = bun.sys.ftruncate(fd, @intCast(bytes.len));
// Dump all the bytes in there
var written: isize = 0;
var remain = bytes;
while (remain.len > 0) {
switch (bun.sys.pwrite(fd, remain, written)) {
.err => |err| {
if (err.getErrno() == .AGAIN) {
continue;
}
bun.Output.debugWarn("Failed to write to memfd: {}", .{err});
_ = bun.sys.close(fd);
return .{ .err = err };
},
.result => |result| {
if (result == 0) {
bun.Output.debugWarn("Failed to write to memfd: EOF", .{});
_ = bun.sys.close(fd);
return .{ .err = bun.sys.Error.fromCode(.NOMEM, .write) };
}
written += @intCast(result);
remain = remain[result..];
},
}
}
var linux_memfd_allocator = LinuxMemFdAllocator.new(.{
.fd = fd,
.ref_count = std.atomic.Value(u32).init(1),
.size = bytes.len,
});
switch (linux_memfd_allocator.alloc(bytes.len, 0, .{ .TYPE = .SHARED })) {
.result => |res| {
return .{ .result = res };
},
.err => |err| {
linux_memfd_allocator.deref();
return .{ .err = err };
},
}
unreachable;
}
};