CWE-1259: Improper Restriction of Security Token Assignment
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe System-On-A-Chip (SoC) implements a Security Token mechanism to differentiate what actions are allowed or disallowed when a transaction originates from an entity. However, the Security Tokens are improperly protected.
Systems-On-A-Chip (Integrated circuits and hardware engines) implement Security Tokens to differentiate and identify which actions originated from which agent. These actions may be one of the directives: 'read', 'write', 'program', 'reset', 'fetch', 'compute', etc. Security Tokens are assigned to every agent in the System that is capable of generating an action or receiving an action from another agent. Multiple Security Tokens may be assigned to an agent and may be unique based on the agent's trust level or allowed privileges. Since the Security Tokens are integral for the maintenance of security in an SoC, they need to be protected properly. A common weakness afflicting Security Tokens is improperly restricting the assignment to trusted components. Consequently, an improperly protected Security Token may be able to be programmed by a malicious agent (i.e., the Security Token is mutable) to spoof the action as if it originated from a trusted agent.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Processor Hardware Class: Not Technology-Specific (Undetermined Prevalence) Class: System on Chip (Undetermined Prevalence) Example 1 For example, consider a system with a register for storing an AES key for encryption and decryption. The key is of 128 bits implemented as a set of four 32-bit registers. The key register assets have an associated control register, AES_KEY_ACCESS_POLICY, which provides the necessary access controls. This access-policy register defines which agents may engage in a transaction, and the type of transaction, with the AES-key registers. Each bit in this 32-bit register defines a security Token. There could be a maximum of 32 security Tokens that are allowed access to the AES-key registers. The number of the bit when set (i.e., "1") allows respective action from an agent whose identity matches the number of the bit and, if "0" (i.e., Clear), disallows the respective action to that corresponding agent. Let's assume the system has two agents: a Main-controller and an Aux-controller. The respective Security Tokens are "1" and "2".
An agent with Security Token "1" has access to AES_ENC_DEC_KEY_0 through AES_ENC_DEC_KEY_3 registers. As per the above access policy, the AES-Key-access policy allows access to the AES-key registers if the security Token is "1". (bad code)
Example Language: Other
The Aux-controller could program its Security Token to "1" from "2".
The SoC does not properly protect the Security Token of the agents, and, hence, the Aux-controller in the above example can spoof the transaction (i.e., send the transaction as if it is coming from the Main-controller to access the AES-Key registers) (good code)
Example Language: Other
The SoC needs to protect the Security Tokens. None of the agents in the SoC should have the ability to change the Security Token.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
This entry is still under development and will continue to see updates and content improvements. Currently it is expressed as a general absence of a protection mechanism as opposed to a specific mistake, and the entry's name and description could be interpreted as applying to software.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |